
Dumpleton
Software

Consulting
Pty Limited

OSE
Version 7.0pl5
Python Manual
19 January 2003

Copyright  2001-2003 Dumpleton Software Consulting Pty Limited
http://www.dscpl.com.au

2

Table of Contents
Table of Contents 3

Manual Overview 7

Python Modules 9
Module Descriptions10
Installation and Setup...................... 10
Additional Information.................... 11

Logging Facility........................... 13
Logging a Message 13
Specifying a Log File 14
Specifying a Log Channel 16
Logging Python Exceptions 16
Exceptions in a Callback................. 17

Program Setup.............................. 19
Configuration Database................... 19
Configuration File 20
Naming Hierarchies 21
Environment Variables.................... 21

Unique Identifiers............................ 22
Process Identity 23

Event Framework......................... 25
Scheduling a Job 25
Real Time Events 28
Destroying Agents........................... 29
Alarms and Timers.......................... 29
Recurring Actions 30
Socket Events 31
Program Signals 32
Program Shutdown.......................... 33

Service Agents 37
Service Naming............................... 38
Service Audience 39
Anonymous Service 39
Service Groups 40
Service Registry 40
Service Announcements.................. 43
Group Announcements.................... 44
3

Table of Contents
Service Lookup44

Service Reports.............................47
Publishing Reports48
Monitoring Reports48
Lifetime of Reports50
Identity of Subscribers52
Existence of Publishers54

Service Requests...........................57
Sending a Request57
Handling a Response59
Identifying a Response60
Detecting a Failure61
Lack of Response63
Servicing a Request64
Generating a Failure65
Delaying a Response66
Identity of the Sender68
Invalid Request Method69
Local Service Requests69

Message Exchange71
Exchange Initialisation....................72
Service Availability.........................72
Connection Announcements74
Authorisation of Clients75
Distributed Exchange Server...........75
Multiple Exchange Groups..............76
Scalability of the Framework78

Message Encoding........................79
Supported Data Types80
Mapping of Scalar Types81
User Defined Types.........................83
Adding New Mappings83

Handling Structured Types..............85

Servlet Framework87
Framework Overview......................87
The HTTP Daemon88
The File Server89
Client Authorisation90
User Authorisation91
HTTP Server Objects91
The Error Servlet92
The Redirect Servlet........................93
The Echo Servlet93
The File Servlet93
Logging of Requests........................94

Servlet Objects95
Processing a Request95
Persistent Connections96
Delaying a Response97
Destruction of Servlets98
Processing Content99
The Form Servlet...........................100
Slow HTTP Clients101

Servlet Plugins............................105
Python Plugin105
Module Caching107
Writing a Plugin108
Plugin Aliasing..............................108

Remote Access111
The RPC Gateway.........................112
The Client Application113
Restricting Client Access113
Duplicate Services.........................114
User Defined Types.......................115
4

Managing User Sessions 116
The XML-RPC Gateway............... 118

The SOAP Gateway 121
Using Multiple Gateways.............. 123
5

Table of Contents
6

Manual Overview
This manual covers the Python wrappers around the OSE C++ class library. The wrappers make avail-
able functionality related to the logging system, the real time events system, the service agent frame-
work for creating distributed applications, the HTTP servlet framework and the RPC over HTTP
interfaces.

Python Modules Lists the available Python modules and their pur-
pose. Includes brief details regarding installation
and setup of the users environment.

Logging Facility Describes the message logging facility, including
how to direct messages to a specific log channel,
how to log messages to a file or to process them
within the actual application.

Program Setup Describes the interface to the configuration data-
base, user environment and other process infor-
mation.

Event Framework Describes the interface to the event system, how
to schedule jobs and setup callbacks in response
to real time events such as timers, signals and
socket activity.
7

browse.php?group=python-manual&entry=modules.htm
browse.php?group=python-manual&entry=logger.htm
browse.php?group=python-manual&entry=events.htm
browse.php?group=python-manual&entry=program.htm

Manual Overview
Service Agents Describes how to create service agents, add them
to groups, subscribe to announcements regarding
specific services or membership of specific serv-
ice groups.

Service Reports Describes how to subscribe to reports published
by specific services. Ie., describes the publish/
subscribe functionality provided by the service
agent framework.

Service Requests Describes how to send requests to remote or
local service agents and how to handle any
response or error which results. Ie., describes the
messaging or request/reply functionality of the
service agent framework.

Message Exchange Describes how to connect up processes to form a
distributed application, including a decentralised
message exchange and exchange groups.

Message Encoding Describes the Python types which can be used in
messages and how this can be extended to incor-
porate new scalar data types.

Servlet Framework Describes the HTTP daemon and servlet frame-
work, including the predefined servlets and how
to create customised HTTP server objects.

Servlet Objects Describes how to create new servlet objects
including how to handle forms, client congestion
and delayed responses.

Servlet Plugins Describes how to create servlet plugins and how
to use the Python plugin to dynamically load
servlets at runtime from the file system.

Remote Access Describes the RPC over HTTP interfaces into the
service agent framework, including support for
NET-RPC, XML-RPC and SOAP protocols.
8

browse.php?group=python-manual&entry=service.htm
browse.php?group=python-manual&entry=reports.htm
browse.php?group=python-manual&entry=requests.htm
browse.php?group=python-manual&entry=exchange.htm
browse.php?group=python-manual&entry=encoding.htm
browse.php?group=python-manual&entry=daemon.htm
browse.php?group=python-manual&entry=remote.htm
browse.php?group=python-manual&entry=servlets.htm
browse.php?group=python-manual&entry=plugins.htm

Python Modules
OSE includes a number of Python modules. The main module is a wrapper around functionality pro-
vided in the OSE C++ class library. Those parts of the OSE C++ class library for which a Python wrap-
per are provided are the logging system, the real time events system, the service agent framework for
creating distributed applications and the HTTP servlet framework.

Additional modules provide access to the OSE service agent framework using an RPC over HTTP pro-
tocol called NET-RPC as well as the XML-RPC and SOAP protocol. Note that the XML-RPC and
SOAP protocols come with restrictions deriving from problems in the respective protocols and the
NET-RPC protocol provides the best integration.

Because interfaces are provided for the OSE service agent framework in both C++ and Python, an ap-
plication may be spread across multiple processes and consist of processes written using either C++ or
Python code. Using shared libraries and dynamic loading, C or C++ code could also be loaded into
Python to perform some functions if desired.

Overall, the Python wrappers provide an interface to the functionality of the OSE C++ class library
which is easier to use than if the C++ class library were used directly. This makes the Python wrappers
ideal for building up the overall structure of a distributed system, with C++ code being used only when
necessary.
9

Python Modules
Module Descriptions

The Python modules, their names and their purpose are described below.

Installation and Setup

The "netsvc" module requires the main OSE C++ class library to be installed, as well as the Python
extension library. The version of "makeit" installed when OSE is installed needs to be run in the
"python" subdirectory of the OSE source code. This final step will install the two Python modules,
a dynamically loadable module which drags in the OSE C++ class libraries and a GUI based debugger
for the service agent framework called "spyon". The exact steps which need to be followed are given
in the "INSTALL" file in the OSE source code.

When the Python modules are installed, they are not installed into your Python installation, but into
the same area that OSE is installed. In order that Python can find the modules, you will need to set your
PYTHONPATH environment variable to include the appropriate library directory in the OSE installa-
tion. For OSE 7.0, if installed into its standard location, the directory will be:

/usr/local/ose/7.0/lib/python

Module Purpose

netsvc This is the main module and provides wrappers around the
functionality of the OSE C++ class library. It includes all that
is required for building distributed applications using the
service agent framework.

netrpc This module provides a client implementation of the RPC
over HTTP protocol implemented by OSE called NET-RPC.

netsvc.xmlrpc This module includes the XML-RPC gateway for OSE. Any
server code is the same as for when the NET-RPC protocol is
used. The only difference is which gateway you instantiate.

netrpc.xmlrpc This module provides a client implementation of the XML-
RPC protocol. The module is interface compatible with
the"netrpc" module.

netsvc.soap This module includes the SOAP gateway for OSE. Any
server code is the same as for when the NET-RPC protocol is
used. The only difference is which gateway you instantiate.

netrpc.soap This module provides a client implementation of the SOAP
protocol. The module is interface compatible with
the"netrpc" module.
10

Additional Information
An OSE installation supports libraries for different architectures. In order that the shared libraries for
your specific platform can be found by the Python module, you should ensure that the OSE_HOST var-
iable is set to the same value it was set to when OSE was installed. For example:

OSE_HOST=X86_LINUX

If you want to be able to run the "spyon" debugger, your PATH environment variable should include
the OSE bin directory. For OSE 7.0, if installed into its standard location, the directory will be:

/usr/local/ose/7.0/bin

If you want to be able to build up a version of the Python wrappers with a DLL for Win32, you have
two choices. The first requires you to have access to either the Cygnus Win32 toolkit or MKS toolkit,
and the Microsoft C++ compiler. In this case the normal build procedure for OSE is followed. If you
only have access to the Microsoft C++ compiler, a native makefile is provided with the source code in
the "win32" directory. You should follow the instructions contained in that directory.

Note that if you wish to use either the SOAP client or SOAP gateway, you will need to separately ob-
tain and install the "ZSI" package from the "pywebsvcs" project on SourceForge. The project site ad-
dress is "http://sourceforge.net/projects/pywebsvcs". You must have version 1.2 RC2 or later of the
ZSI package.

Additional Information

As the main Python module is a wrapper around functionality provided in the OSE C++ class libraries,
it may be worthwhile to also consult the manual pages for the corresponding classes in the C++ class
library and the general C++ class library manual. The behaviour of some features is controlled using
environment variables and not all of these may be mentioned in the manual for the Python modules.
11

http://sourceforge.net/projects/pywebsvcs

Python Modules
12

Logging Facility
The logging facility provides you with a mechanism for generating and capturing messages generated
by your application. These can be automatically saved to a log file, or intercepted and dealt with in
some other way. The majority of functionality for this feature is provided by the OTC_Logger class
in the OSE C++ class library.

Some of the features of the logging facility are optional and controlled via environment variables. You
should consult the manual page for the OTC_Logger class and the general OSE C++ class library
manual as a number of these features will not be described here or covered only briefly.

Logging a Message

The logging facility provides you with the ability to log a message string with a specified priority or
level assigned to it. The level is analogous to that used by the UNIX function called "syslog()".

Level Usage

LOG_EMERGENCY A panic condition.

LOG_ALERT A condition that should be corrected immediately,
such as a corrupted system database.

LOG_CRITICAL Critical conditions, such as hard device errors.

LOG_ERROR Errors.

LOG_WARNING Warning messages.
13

Logging Facility
To log a message, a handle to an instance of the Logger class is acquired and the "notify()" mem-
ber function is called.

import netsvc
logger = netsvc.Logger()
logger.notify(netsvc.LOG_DEBUG,"message")

The format of a message when displayed will be:

DEBUG: message

The string before the ":" corresponds to the level assigned to the message. The remainder of the line
after the ":" is the actual message. If you wish to have the time and process ID appear in the prefix,
call the "enableLongFormat()" member function. Whether the longer form of prefix is enabled
can be queried using the "longFormatEnabled()" member function. It can be disabled using the
"disableLongFormat()" member function.

By default, messages will appear on the standard error output. If you wish to disable the display of mes-
sages onto the standard error output, call the "disableStderrOutput()" member function. Con-
versely, the "enableStderrOutput()" member function can be called to enable display of
messages onto the standard error output if previously disabled. Whether messages are currently being
displayed onto the standard error output can be queried by calling the member function "stder-
rOutputEnabled()".

Specifying a Log File

At any time, messages can be captured into a single file by specifying the name of a log file using the
member function "setLogFile()". If a log file is currently in use, the name of the log file can be
queried using the "logFile()" member function.

logger.setLogFile("/var/tmp/application.log")

LOG_NOTICE Conditions that are not error conditions, but that
may require special handling.

LOG_INFO Informational messages.

LOG_DEBUG Message that contain information normally of use
only when debugging a program.

Level Usage
14

Specifying a Log File
The string used to specify the name of a log file may incorporate the following special tags.

When the tags corresponding to dates are used, a new log file will automatically be created when the
value corresponding to a date component changes. The following will for example result in a new log
file being created each day.

logger.setLogFile("/var/tmp/application-%Y-%m-%d.log")

Note that older log files will not be removed automatically, so some other mechanism such as a cron
job will need to be employed to remove them.

The name of a log file can also be set using the OTCLIB_LOGFILE environment variable instead of
calling "setLogFile()". Similarly, output to the standard error output can be disabled using the
OTCLIB_NOLOGSTDERR environment variable and the inclusion of the time and the process ID in
the message prefix enabled using the OTCLIB_LOGLONGFORMAT environment variable. If used,
these environment variables must be set before the application is run or at least before the "netsvc"
module is imported for the first time.

import os
os.putenv("OTCLIB_LOGFILE","/var/tmp/application-%Y-%m-%d.log")
import netsvc

When an application first attempts to open a log file, if it already exists it will be truncated. If you do
not want the log file truncated, but want messages to be appended to an existing log file, the
OTCLIB_APPENDLOGFILE environment variable must be set. Again, this needs to be set prior to the
application being run or at least before the "netsvc" module is imported for the first time.

Note that if any of these environment variables are used, but calls are subsequently made to the corre-
sponding member functions of the Logger class from within the application, the values of the envi-
ronment variables will effectively be overridden from that point onwards.

Tag Purpose

%h Will encode the hostname of the machine into the name of the log file.

%p Will encode the process ID into the name of the log file.

%Y Will encode the current year as 4 digits into the name of the log file.

%y Will encode the current year as 2 digits into the name of the log file.

%m Will encode the current month of the year as a zero padded 2 digit
number into the name of the log file.

%d Will encode the current day of month as a zero padded 2 digit number
into the name of the log file.
15

Logging Facility
Specifying a Log Channel

When logging a message, a log channel may also be specified. If the name of a log channel starts with
a character other than an alphanumeric character, the message will not be displayed on the standard
error output or appear in the log file. If it is displayed or captured in the log file, the name of the log
channel does not appear anywhere in the message. The intent of the log channel is to allow one part of
an application to capture specific messages produced by another part of the application and deal with
them in a special way.

To log a message against a specific log channel, the member function "notifyChannel()" is used.
The name of the log channel is supplied as the first argument.

logger.notifyChannel("VISIBLE",netsvc.LOG_DEBUG,"message")
logger.notifyChannel("#HIDDEN",netsvc.LOG_DEBUG,"message")

Messages logged against a specific log channel, can be captured by calling the member function
"monitorChannel()", supplying the name of the log channel and a callback function.

def callback(channel,level,message):
print (channel,level,message)

logger.monitorChannel("#HIDDEN",callback)

The message supplied to the callback function is the original message and does not contain the prefix
describing the priority or level assigned to the message, nor does it contain any details relating to the
current time or process ID. If you are going to subsequently log the message to a file, you would need
to add these details yourself if you require them.

Only one callback can be associated with a particular log channel. If multiple callbacks are required
for a particular log channel, separate instances of the Logger class should be used. To stop monitor-
ing a specific log channel, the member function "monitorChannel()" is called again but with
"None" supplied in place of the callback function.

If the callback function was a member of a class, it is important to deregister the callback, else a refer-
ence to the instance of the class will be maintained and it may not get deleted. You can also deregister
all of the callbacks associated with a particular instance of the Logger class by calling the member
function "destroyReferences()". This would be necessary if the class containing the callbacks
also held a reference to the instance of the Logger class. In this case, a circular reference would exist
and neither object would ever be destroyed.

Logging Python Exceptions

To make the task of logging details of a Python exception easier, the "logException()" function
is provided by the "netsvc" module. This function should only be called from within the context of
a Python "except" clause. The information logged is similar to that displayed by Python when an
exception is not caught and includes details of the exception and a stack trace.
16

Exceptions in a Callback
try:
function()

except SystemExit:
raise

except:
netsvc.logException()
sys.exit()

The details of the exception are logged with level "LOG_ERROR" and a specific log channel is not
specified. If you wanted to log the details of the exception to a specific log channel, or vary the level,
you can use the "exceptionDetails()" function of the "netsvc" module to obtain the same in-
formation that would be logged by the "logException()" function and then call the "notify()"
member function of an instance of the Logger class yourself.

try:
function()

except SystemExit:
raise

except:
details = netsvc.exceptionDetails()
logger.notifyChannel("WARNING",netsvc.LOG_WARNING,details)
pass

If you don’t want the stack trace and only want the description of the exception, use the function "ex-
ceptionDescription()" instead. The result of calling either of these functions need not be used
with the logger, but could be displayed using any other available mechanism as well.

Note that the "exceptionDetails()" and "exceptionDescription()" functions are also
available in the "netrpc" module if you are using that in a standalone client application.

Exceptions in a Callback

Whenever a callback is executed, it occurs as a result of a call from C++ code into Python code. Be-
cause of the mix of C++ code and Python code, if an exception occurs within the callback function,
Python can’t by itself properly shutdown the application. This is further complicated by the fact that a
callback can be called within the context of a callback from the event dispatcher.

As a consequence, when any callback into Python code from C++ occurs, if a Python exception occurs
and the callback itself doesn’t catch it and deal with it, it will be caught with the details of the exception
being logged. The event dispatcher will then be stopped if it is running and the "SystemExit" ex-
ception raised in order to prevent Python from running any further code. The outcome is the same as
when only Python code is being used, except that the details of the exception are displayed using the
logging facility rather than being dumped directly onto the standard error output.
17

Logging Facility
18

Program Setup
As Python is an interpreted language, configuration of an application can be carried out by editing the
actual scripts. In some circumstances however, it is still easier or more practical to rely upon a config-
uration database or environment variables. When using OSE this is especially the case, as an applica-
tion can be a mix of C++ and Python code and configuration data may need to be accessible from code
written in both languages.

To support this the Python wrappers provide an interface to the configuration database of the OSE C++
class library. The corresponding class in the OSE C++ class library which provides this functionality
is the OTC_Program class. Not all functionality of this class is mirrored in the Python interface as
Python has its own way of doing most of what is provided by this class. Access is however provided
to aspects of the configuration database and environment variable database. The functionality for gen-
erating unique identifiers is also exposed.

Configuration Database

The configuration database is an in memory database. The database may be populated by calls from
within the application, or by loading in a configuration file. The configuration database may also be
saved to a file. In essence, the configuration database is not much more than a dictionary mapping
names to values.

To initially load the configuration database from a file, the "loadConfig()" function is used. A sin-
gle configuration item may be explicitly merged into the configuration database using the
"mergeConfig()" function. A query can subsequently be made against the configuration database
using the "lookupConfig()" function. If no match is found in the configuration database for the
item in question, the value None is returned.
19

Program Setup
import netsvc
import os

netsvc.loadConfig("database.cfg")
netsvc.mergeConfig("PWD",os.getcwd())

print netsvc.lookupConfig("PWD")

A single configuration item can be removed from the database using the "removeConfig()" func-
tion. The configuration database can be completely emptied using the function "removeAllCon-
fig()". The contents of the configuration database can be saved to a file using the
"saveConfig()" function.

netsvc.removeConfig("PWD")
netsvc.saveConfig("database.cfg")

Configuration File

The only real restrictions in regard to naming is that the colon character should not be used anywhere
in a name, a name should not being with an exclamation mark and whitespace should not be used at
the start or end of a name. The colon character cannot be used as it used in a configuration file to sep-
arate the name from the value. A leading exclamation mark should not be used as it is used to denote
a comment.

If these characters are used in a name and the configuration database is saved to a file, the results when
that configuration file is read back in will not be the same. The only other special character when used
in a configuration file is a back slash, which when used at the end of the line, indicates the following
line is part of the same value. Note that the leading whitespace and the whitespace either side of the
colon will be ignored when the configuration file is read in.

! comment
single-line-value : value
multi-line-value : value\

value

When reading in a configuration file using "loadConfig()", an exception is raised only if the file
doesn’t exist or the file couldn’t be opened. If there are no errors in the file, the value None is returned.
If there are errors in the file, a string is returned which contains details of the errors and what action
has been taken. By default, the details of the errors are also output via the logging system on the default
log channel.

If details of any errors should be output on a specific log channel, an optional second argument can be
supplied to the "loadConfig()" function giving the name of the log channel. If the value None is
supplied in place of the name of the log channel, the details of the errors will not be output via the log-
ger at all. The value None could be used if you wish to amend the details of the errors before they are
logged.
20

Naming Hierarchies
file = "database.cfg"
errors = netsvc.loadConfig(file,None)
if errors:

errors = "Error reading %s\n%s" % (‘file‘,errors)
netsvc.Logger().notify(netsvc.LOG_DEBUG,errors)

Naming Hierarchies

If a naming hierarchy is required, the components of the hierarchy within the name should be separated
by using a period.

compiler.preprocessor.debug-level : 0
compiler.parser.debug-level : 1
compiler.code-generator.debug-level : 0
compiler.assembler.debug-level : 0

In general, the purpose of using a naming hierarchy is to associate properties with the same name with
different parts of an application, or with different instances of some object. To cater for default values,
rather than enumerating all possible objects, a wildcard can be specified in place of a single component
in a naming hierarchy. This says to match any component name in this position. Only those items
which need to be different then need to be explicitly specified.

compiler.*.debug-level : 0
compiler.parser.debug-level : 1

When a lookup is made against the database, a check is first made for any entry which matches exactly
the name of interest. If this name is not present, a search is then made of the entries containing a wild-
card. If a match is found, the value associated with the wildcard entry will be returned. If there are
multiple wildcard entries which match a lookup against the configuration database, that which has the
longest leading exact match will be used.

Environment Variables

In addition to the configuration database, an interface is also provided to the standard operating system
environment variables. Python does already provide an interface for this, however the Python interface
does have a few quirks which can sometimes make it less than useful.

One problem with the standard Python interface is that when "os.putenv()" is used to set an envi-
ronment variable, that variable is not then visible using "os.getenv()". This is because
"os.getenv()" uses "os.environ", which is a copy of the environment which is populated at
startup and any changes to environment variables are not reflected in that copy.

As such, although changes to the environment will be seen by subprocesses, they will not be visible in
the same process. This means that an environment variable can’t at the same time be used to transfer
information to a different part of the application.
21

Program Setup
To lookup the value of an environment variable the function "lookupEnviron()" is used. If a new
environment variable needs to be set, or an existing value changed, the function "mergeEnvi-
ron()" is used. Any changes to the environment variables will be visible immediately, but there is no
way to get a list of all environment variables which are set. When a lookup is made but no such envi-
ronment variable exists, the value None is returned.

netsvc.mergeEnviron("PWD",os.getcwd())
print netsvc.lookupEnviron("PWD")

In addition to these functions, the function "expandEnviron()" is provided. This function accepts
a string and replaces any reference to an environment variable specified using Bourne shell syntax,
with that environment variables actual value. The intent in providing this function is that it can be used
in conjunction with the configuration database, allowing configuration items to refer to environment
variables.

application.log-files : ${HOME}/logs

Note that the expansion isn’t automatic when a lookup is made against the configuration database. The
application code will have to explicitly expand the value obtained form the configuration database.

value = netsvc.lookupConfig("application.log-files")
directory = netsvc.expandEnviron(value)

Unique Identifiers

In many applications, it is often useful to be able to create abstract identifiers to uniquely identify ob-
jects or resources. These might be used to identify user sessions in a web based application, specific
requests in a distributed messaging system, or even the particular service agent which a request in a
distributed messaging system is targeted at.

Such identifiers may only need to be unique within the context of the lifetime of the application, or
possibly may need to be globally unique. In the case of the latter, to be rigourous this would normally
require an external database to be maintained which tracks what identifiers have been used. In most
cases however, it is not necessary to go to that extent and a simplistic means can be used to generate a
psuedo unique identifier which is sufficient.

To generate such identifiers the function "uniqueId()" is provided. The function can provide iden-
tifiers in either a short or long format. In the short format, the identifier contains components which
identify the host on which the process is running, the process id and an incremental counter. In the long
format, time values are also included which tie the identifier to an instant in time.

id1 = netsvc.uniqueId(netsvc.ID_SHORT_FORMAT)
id2 = netsvc.uniqueId(netsvc.ID_LONG_FORMAT)

If you wish to incorporate your own prefix into the identifier, an optional second argument can be sup-
plied to the "uniqueId()" function.
22

Process Identity
id1 = netsvc.uniqueId(netsvc.ID_SHORT_FORMAT,"$SID?")

The short format identifier is suitable for use within the context of a single process. Duplicates would
only be encounterd if the incremental count of the number of identifiers exceeded what can be stored
within a 32 bit integer value. If this were to occur, the counter would wrap around to zero and conflicts
might thus arise if the existing identifier were still active.

The short format identifier could also be used within the context of a constrained distributed applica-
tion provided that the nature of the application is such that knowlege of what the identifier is associated
with is always discarded when the process the identifier is bound to is destroyed. This would be nec-
essary, as the identifier could be reused if the process id was reused at some latter point.

If a better gaurantee of uniqueness over time is required, the long format identifier should be used. In
this case, the identifier also records the time at which the first identifier was generated by the process,
as well as a time delta as to when that particular identifier was generated. Incorporation of time infor-
mation avoids problems with the incremental counter overflowing and reuse of the same process id at
a latter point in time.

Process Identity

A further feature which is useful in distributed applications is a way of identifying specific processes.
Such an identifier can be generated by combining the name of the host and the process id into a single
string. To facilitate this, the function "processIdentity()" is provided.

identity = netsvc.processIdentity()
23

Program Setup
24

Event Framework
The main support for concurrency in the OSE C++ class libraries comes in the form of a mechanism
for building event driven systems. This is based around a central job queue and a dispatcher, which
takes successive jobs from the queue and executes them. To support real time systems, there also exist
a number of event sources which will schedule jobs to trigger an agent to be notified when an event of
interest occurs. The major event sources include timers, signals and the availability of data for reading
on a socket.

The major classes in the OSE C++ class library involved in providing this functionality are the
OTC_Dispatcher, OTC_EVAgent and OTC_Job classes, plus the various event classes related to
the event sources. In the C++ implementation, communication of events is mainly performed by pass-
ing around event objects and having a single event handler method in an agent to deal with them. In
the Python implementation, separate callback functions can be registered by an agent against each
event of interest.

Note that only the major features of the C++ implementation are reflected in the Python interface. Py-
thon does not provide a means of creating your own event types or event sources. A Python agent is
also not able to process any events except those from the major event sources.

Scheduling a Job

Scheduling of jobs comes in the form of registering a callback function with the dispatcher for execu-
tion. A job may be scheduled as a priority job, a standard job, or an idle job. The type of job determines
where in the order of existing jobs, a new job will be placed. Any priority jobs are executed before a
standard job is processed. When there are no priority jobs or standard jobs remaining, any pending idle
25

Event Framework
jobs will be reclassified as standard jobs and subsequently executed. When scheduling a job, if jobs of
the same type already exist, the new job will be placed at the end of the list of jobs of the same type.

To schedule a job the dispatcher member function "schedule()" must be called, supplying the call-
back function and the type of job. To set the dispatcher running, the member function "run()" is
called. If the only feature of the event system which is used is that of scheduling jobs, the "run()"
function will return when there are no more jobs to execute. A job may prematurely stop the dispatcher
by calling the "stop()" member function. If a callback raises an exception which is not caught and
processed within the callback itself, the details of the exception will be logged, the dispatcher stopped
and Python exited immediately.

def callback(message="hi"):
print message

dispatcher = netsvc.Dispatcher()
dispatcher.schedule(callback,netsvc.IDLE_JOB)
dispatcher.schedule(callback,netsvc.STANDARD_JOB)
dispatcher.schedule(callback,netsvc.PRIORITY_JOB)
dispatcher.run()

The callback supplied when scheduling a job can be a normal function or a member function associated
with an instance of a class. If a callback function is scheduled directly with the dispatcher in this way,
it will be called with no arguments and cannot be cancelled once scheduled.

If it is necessary to pass arguments to a callback function, an instance of the Job class must be used
in place of the actual callback function. The Job class will hold a reference to the real callback func-
tion as well as the arguments. When the job is executed it will call the callback function with the sup-
plied arguments.

job = netsvc.Job(callback,("bye",))
dispatcher.schedule(job,netsvc.IDLE_JOB)

In addition to providing a means of supplying arguments to a callback function, the Job class provides
a means of cancelling execution of a callback function. In order to do this, a reference to the instance
of the Job class should be kept. If it is subsequently necessary to cancel execution of the callback prior
to it having being called, the "cancel()" member function of the Job class should be called.

job = None
def callback1():

print "hi"
job.cancel()

def callback2():
print "hi"

dispatcher.schedule(callback1,netsvc.PRIORITY_JOB)
job = netsvc.Job(callback2)
dispatcher.schedule(job,netsvc.STANDARD_JOB)
26

Scheduling a Job
All that is occuring here is that when the "cancel()" member function is called, a flag is set. When
the job is executed it will note that the flag is set and will not execute the callback function. If the call-
back function is a member function of a class, it is important to ensure that any reference to the instance
of the Job class is destroyed when no longer required. If this is not done and the reference is a member
variable of the same class the callback function is a member of, a circular reference will exist and that
instance of the class will not be able to be destroyed.

Any arguments to be passed to the callback function would by default be supplied when the instance
of the Job class is created. If it is necessary to generate an instance of the Job class such that it can
be passed to another part of the program, but the arguments to the callback function are not known at
that time, it is instead possible to supply the arguments at the time the job is scheduled. This is done
by using the "schedule()" member function of the Job class rather than that of the dispatcher. Any
arguments supplied in this way will override those provided when the instance of the Job class is cre-
ated.

job = None
def callback1(message):

print message
job.schedule(netsvc.STANDARD_JOB,("override",))

def callback2(message)
print message

job = netsvc.Job(callback1,("default",))
job.schedule(netsvc.STANDARD_JOB)
job = netsvc.Job(callback2)

This would allow for instance a class which accepts callback registrations to return a reference to a
Job class which will later be used to schedule the callback with an as yet undetermined set of argu-
ments. The client who registered the callback could however cancel execution of the callback before
it is called.

Once "cancel()" has been called on an instance of a Job class, whether or not it has already been
scheduled, the callback function will never be executed. To reset the flag which makes the callback
function runnable, the "reset()" member function should be called. To determine if the an instance
of the Job class is still in a runnable state, a truth test can be performed on it.

if job:
job wasn’t cancelled
job.schedule(netsvc.STANDARD_JOB)

else:
job was cancelled
pass

If you wish to use the Job class separate to the dispatcher, you can trigger execution of the callback
function by calling the "execute()" member function. If any arguments are supplied to the "exe-
27

Event Framework
cute()" member function, these will override any which may have been supplied when that instance
of the Job class was created.

Real Time Events

The Python interface provides the ability to register interest in a number of real time events. These are
program shutdown, one off alarms or actions, recurring actions, timers, signals and data activity on
sockets. That an event of interest has occurred is notified by execution of a callback supplied at the
time that interest in an event is registered.

In the C++ implementation, the methods for expressing interest in a specific type of event were spread
across numerous classes. In the Python interface, all functions for registration of interest in events are
contained within the Agent base class. Any object interested in receiving notification of an event oc-
curring is expected to derive from the Agent class.

The simplest type of notification isn’t really a real time event at all, but a variation on the concept of
scheduling a job with the dispatcher. Instead of calling the "schedule()" member function of the
dispatcher, the "scheduleAction()" member function of the Agent base class is called.

The major difference between using "scheduleAction()" and "schedule()" is that when us-
ing "scheduleAction()" you can optionally supply an additional string argument to be used as
an identifier for that job. This identifier can be used to cancel the job before it actually gets executed
by calling "cancelAction()". If the callback funcion accepts a single argument, the identifier will
also be passed to the callback function as argument. The identifier can thus be used to distinguish be-
tween different jobs calling the same callback function. If an identifier is not explicitly provided, a
unique internal identifier will be created. Whether or not the identifier is set explicitly or created inter-
nally, the identifier used is returned as the result of the "scheduleAction()" method.

class Object(netsvc.Agent):
def __init__(self):

self.scheduleAction(self.callback1,netsvc.PRIORITY_JOB)
def callback1(self):

self.scheduleAction(self.callback2,netsvc.IDLE_JOB,"hi")
self.scheduleAction(self.callback2,netsvc.IDLE_JOB,"bye")

def callback2(self,name):
print name
if name == "hi":

self.cancelAction("bye")

dispatcher = netsvc.Dispatcher()
object = Object()
dispatcher.run()

When using the Agent class, you still need to run the dispatcher. You do not need to schedule any
jobs directly with the dispactcher, but any initial agents need to be created prior to the dispatcher being
run. Note that in scheduling a job with a particular identifier, any job already scheduled with that agent
28

Destroying Agents
using the same identifier will first be cancelled. If you want to cancel all jobs scheduled using the
"scheduleAction()" member function you should call the "cancelAllActions()" member
function.

Destroying Agents

Ensuring that any outstanding job is cancelled, or deregistering interest in any event source, is impor-
tant if you are endeavouring to destroy an agent object. If registrations are not cancelled, a circular ref-
erence will exist between data held by the instance of the Agent base class and the derived object.
Such circular references defeat the Python reference counting mechanism, meaning that the object may
never be destroyed.

To combat this particular situation, the member function "destroyReferences()" is included in
the Agent base class. This will cancel all outstanding jobs and cancel any interest in other event sourc-
es as well, destroying any circular references in the process. Provided there are no other references to
the object elsewhere, Python should now be able to destroy it.

If you have circular references within your derived class, you may wish to extend this method in your
own class so as to undo those circular references. Using the same member function name will make it
less confusing to a user of your class as they will only have to call one function. If this is done, you
should ensure however that the last thing the derived version of the method does is call the version of
the method in the immediate base class.

Alarms and Timers

Alarms and timers are a means of having a callback function executed at some point of time in the fu-
ture. The difference between an alarm and a timer is that an alarm is defined by an absolute value or
point in time, where as a timer is defined by a relative offset in time. For an alarm this means supplying
the clock time in seconds at which the callback should be executed. For a timer this means supplying
the number of seconds from now at which point the callback should be executed.

class Object(netsvc.Agent):
def __init__(self):

offset = 60
now = time.time()
then = now + offset
self.setAlarm(self.callback1,then)
self.startTimer(self.callback2,offset,"timeout-1")
self.startTimer(self.callback2,offset+10,"timeout-2")

def callback1(self):
print "alarm"

def callback2(self,name):
print name
if name == "timeout-1":

self.cancelTimer("timeout-2")
29

Event Framework
The member function for setting an alarm is "setAlarm()" and that for starting a timer is "start-
Timer()". The first argument is the callback function, the second argument is the absolute or relative
time and the third argument is an optional identifier for that alarm or timer. Scheduling an alarm or
timer with an identifier matching that of an alarm or timer which hasn’t yet expired will cause that un-
expired alarm or timer to be cancelled.

Both types of events are one off events, with the registration being cancelled once the callback has been
executed. The identifier may also be used to cancel an alarm or timer before it expires. To cancel an
alarm use "cancelAlarm()" and to cancel a timer use "cancelTimer()". To cancel all pending
alarms use "cancelAllAlarms()" and to cancel all pending timers use "cancelAllTim-
ers()". If an identifier is not excplicitly provided, an internal identifier will be automatically created
with it being returned as the result of the function being called to schedule the callback.

Recurring Actions

A recurring action is where a job is run at regular intervals. Precisely when the callback function asso-
ciated with a job is executed is determined by a specification of the form used by the UNIX cron utility.
The specification consists of five fields each separated by white space. The fields specify:

• minute (0-59),
• hour (0-23),
• day of the month (1-31),
• month of the year (1-12),
• day of the week (0-6 with 0=Sunday).

A field may be an asterisk "*", which always stands for "first-last". Ranges of numbers are al-
lowed. Ranges are two numbers separated with a hyphen. The specified range is inclusive. For exam-
ple, 8-11 for an "hours" entry specifies execution at hours 8, 9, 10 and 11.

Lists are allowed. A list is a set of numbers (or ranges) separated by commas. For example,
"1,2,5,9" and "0-4,8-12". Step values can be used in conjunction with ranges. Following a range
with "/number" specifies skips of the number’s value through the range. For example, "0-23/2"
can be used in the hours field to specify the callback function be executed every other hour. Steps are
also permitted after an asterisk, so if you want to say "every two hours", just use "*/2".

Names can also be used for the "month" and "day of week" fields. Use the first three letters of the par-
ticular day or month (lower case, or first letter only uppercase).

The day that a callback function is to be executed can be specified by two fields, day of month and day
of week. If both fields are restricted (ie., aren’t "*"), the callback function will be executed when either
field matches the current time. For example, "30 4 1,15 * 5" would cause the callback function
to be executed at 4:30 am on the 1st and 15th of each month, plus every Friday.

To schedule this type of job, the "scheduleAction()" function is used except that instead of spec-
ifying the job type as the second argument, the specification string should be used.
30

Socket Events
class Object(netsvc.Agent):
def __init__(self):

self.scheduleAction(self.daily,"0 0 * * *","daily")
self.scheduleAction(self.weekly,"0 0 * * Sat","weekly")
self.scheduleAction(self.monthly,"0 0 1 * *","monthly")
self.scheduleAction(self.yearly,"0 0 1 Jan *","yearly")
self.scheduleAction(self.holiday,"0 0 25 Dec *","christmas")

def daily(self):
print "daily"

def weekly(self):
print "weekly"

def monthly(self):
print "monthly"

def yearly(self):
print "yearly"

def holiday(self,name):
print name

As a recurring action by nature will always run at some point in the future, you have to explicitly call
"cancelAction()" to stop it from running, even if it has already run at some point in time already.
If you make an error in the specification string such that it is invalid, no indication will be given and
the job will simply never be executed. The "cancelAllActions()" member function, as well as
cancelling actions associated with a once off call of a callback function, will also cancel all recurring
actions.

Socket Events

In an event driven system, it is important that any callback not unnecessarily block waiting for some-
thing to happen. If a callback does block, it prevents any other part of the system from doing some-
thing. The main reason which a callback may block is due to an attempt to read data from a socket when
there is no data waiting to be read. In an event driven system, an application should register interest in
the availability of data on a socket and only attempt to read data from the socket when it is known that
there is some available.

It is also advantageous in a event driven system for sockets to be placed into non blocking mode. When
a socket is in non blocking mode, if data is written to a socket and the socket is full an error is returned
indicating that the call would have blocked. The code can now register interest in the possibility of be-
ing able to write data to a socket and subsequently be notified when such a call would be successful.
In the mean time, other parts of the system can still do something.

To register interest in either of these events, the member function "subscribeSocket()" should
be used. The first argument to the function should be the callback function, the second argument the
socket descriptor and the third argument the type of events. If the third argument is not supplied, it will
default to SOCKET_POLLIN, indicating interest in the availability of data on a socket for reading.
31

Event Framework
Other possible values for the third argument are SOCKET_POLLOUT and SOCKET_POLLPRI. The
value SOCKET_POLLPRI is similar toSOCKET_POLLIN except that it relates to there being priority
out of band data being available for reading. Out of band data is not a feature which is used much these
days and isn’t implemented the same on all systems. It is probably best to avoid using out of band data.

A final value of SOCKET_POLLOUT indicates interest in when data can be safely written to the socket
without the call blocking. Note that this will generally nearly always be the case, so you should only
subscribe to this event on a socket, when you know that writing to the socket would cause it to block.
Once you have been notified that it is safe to write to a socket and you have written your data, you
should immediately unsubscribe to this event on a socket, otherwise your callback will continually be
called.

class Agent(netsvc.Agent):
def __init__(self,host,port):

netsvc.Agent.__init__(self)
self._host = host
self._port = port
self.scheduleAction(self.connect,netsvc.STANDARD_JOB)

def connect(self):
self._sock = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
try:

self._sock.connect((host,port))
except:

dispatcher.stop()
else:

self.subscribeSocket(self.read,self._sock.fileno())
def read(self,fileno,event):

if fileno != self._sock.fileno():
return

if event == netsvc.SOCKET_POLLIN:
data = self._sock.recv(1024)
if len(data) == 0:

self.unsubscribeSocket(self._sock.fileno())
self._sock.close()
dispatcher.stop()

else:
sys.stdout.write(data)

When you are no longer interested in a particular event on a socket, you can unsubscribe to that event
using the "unsubscribeSocket()" member function. If called with only a single argument, all
events currently of interest on that socket will be unsubscribed. To unsubscribe to only a specific event
type, pass the type of event as the second argument.

Program Signals

The most common circumstance in which an application may receive a program signal is when it is
being killed as result of a user interrupting it by typing control-C, or if running UNIX, when the oper-
32

Program Shutdown
ating system is being shutdown. Other uses for program signals are to force an application to reread a
configuration file.

These three cases are typically indicated by the program signals SIGINT, SIGTERM and SIGHUP. A
robust application should at least catch the first two of these signals and cause the program to shutdown
gracefully. This may entail ensuring that any data is written out to files, removal of file locks, closing
off of database connections etc.

To subscribe to a signal, the member function "subscribeSignal()" should be used. The first ar-
gument should be a callback function to be called when a particular signal occurs and the second ar-
gument the particular signal of interest. A particular agent may only supply one callback for any
particular signal, but different agents may subscribe to the same signal with both being notified when
it occurs. Although an interest in such a signal is usually persistent, it is possible to unsubscribe from
a particular signal using the member function "unsubscribeSignal()" and unsubscribe from all
signals using "unsubscribeAllSignals()".

class Agent(netsvc.Agent):
def __init__(self):

netsvc.Agent.__init__(self)
self.subscribeSignal(self.signal,signal.SIGINT)
self.subscribeSignal(self.signal,signal.SIGTERM)

def signal(self,signum):
self.scheduleAction(self.stop,netsvc.PRIORITY_JOB)

def stop(self):
netsvc.Dispatcher().stop()

In practice, only one of the agents subscribed to SIGINT and SIGTERM should actually shutdown the
dispatcher. This agent should however, not shutdown the dispatcher immediately as other agents may
not yet have received their notification that the signal occurred. The agent should instead schedule a
priority job to actually stop the dispatcher. This priority job will only be executed after all outstanding
signal notifications have been delivered.

Program Shutdown

Subscription to a program signal provides a means of immediately shutting down an application when
caused to do so by an external signal. What program signals don’t do however, is provide a means of
initiating a graceful shutdown of an application from within the application itself. An application could
send itself a signal, however, this isn’t necessarily practical.

A further problem is that in an event driven system, it may not always be possible to perform every-
thing that is required in a single callback function. What is instead needed is the ability to run the ap-
plication for a further finite amount of time so that any outstanding operations can be finalised first. At
the end of that time, then the application can be stopped.

To support this slightly more orderly mechanism for program shutdown, the member function
"scheduleShutdown()" is provided. When an agent wishes to force the program to shutdown it
33

Event Framework
should call this member function. This member function can also be called when an external signal
intended to shutdown the program is received. Doing this in the latter case means you don’t need to
have separate code for the two different cases.

If an agent is interested in the fact that the program is being shutdown, it can call the "subscribe-
Shutdown()" member function, supplying a callback function to be called when such an event does
occur. Note that the call to "scheduleShutdown()" will result in the dispatcher being stopped au-
tomatically, so you do not need to do it explicitly. If necessary, an agent can unsubscribe from program
shutdown notifications by calling the member function "unsubscribeShutdown()".

class Agent(netsvc.Agent):
def __init__(self):

self.subscribeShutdown(self.shutdown)
self.subscribeSignal(self.signal,signal.SIGINT)
self.subscribeSignal(self.signal,signal.SIGTERM)
self.startTimer(self.timeout,60)

def timeout(self):
self.scheduleShutdown()

def signal(self,signum):
self.scheduleShutdown()

def shutdown(self,category):
if category == netsvc.SHUTDOWN_PENDING:

shutdown is pending
else:

shutdown has arrived

When shutdown is initiated, any callback function supplied by an agent will actually be called twice.
The first time it is called, it will be called with the value "SHUTDOWN_PENDING". Once all subscribed
agents have been notified that shutdown is pending, the callback function will then be subsequently
called again, this time with the value "SHUTDOWN_ARRIVED". Upon all agents receiving the second
notification, the dispatcher will be stopped and the process will exit.

Note that the second of these notifications will not occur immediately after the first. Exactly how much
time may pass is dependent on a number of factors. The first determining factor is the argument sup-
plied to the "scheduleShutdown()" member function. If no argument is supplied, or a value of
"0" is supplied, there will be an inbuilt delay of 1 second between shutdown being scheduled and the
program actually being shutdown.

This implicit delay gives scope for activities which can’t be factored into a single callback function
time to be carried out. For example, it may be necessary to send data via a socket to some remote host
and wait for the response. If the default value of 1 second is insufficient, or is too long a time, it can
be overridden in a number of ways.

The first way of overriding the default value of 1 second is by setting the environment variable
OTCLIB_SHUTDOWNDELAY. If this is done, it should be set to a value representing the number of
milliseconds to wait. An alternative is to modify each call of "scheduleShutdown()" and explic-
34

Program Shutdown
itly provide the time delay as an argument. If this is done, the argument should express the number of
full or partial seconds as a floating point value.

Using a time delay is a useful starting point, as it provides a means of defining an upper bound on the
amount of time you wish to allow the system to run before it is stopped. Having a small delay and en-
suring everything is done in that time is preferable, as in certain circumstances such as the operating
system sending a SIGTERM to an application on system shutdown, the operating system will usually
forcibly shutdown your application using SIGKILL after 5 seconds if it doesn’t do so of its own ac-
cord.

Although getting away from the goal of having only one mechanism for shutting down a program, in
this circumstance, it may still be preferable to separately identify a SIGTERM signal and deal with it
differently. Here you might only do anything that is absolutely essential and stop the process immedi-
ately. What is the best approach will depend on the specific application in question.

If the problem of a SIGTERM signal is ignored, a further mechanism for delaying actual shutdown of
a process is also provided. If upon receiving notification of a pending shutdown, an agent knows it
needs to wait for some event to occur first, it can call the "suspendShutdown()" member function.
If this is done, although the shutdown delay may expire, actual program shutdown will not occur until
a corresponding call to the "resumeShutdown()" member function. If more than one agent calls
"suspendShutdown()", actual shutdown will not occur until "resumeShutdown()" has been
called a matching number of times.

Although it is possible to suspend the shutdown process in this way, it is not possible to cancel it com-
pletely. But then, if an agent doesn’t call "resumeShutdown()" at some point it would never actu-
ally occur. This wouldn’t be very useful however, as more than likely parts of the application may have
placed themselves into a dormant state.

Finally, as scheduling program shutdown upon a signal occurring would be done in practically all pro-
grams, support for this has been factored into the actual dispatcher. Thus, instead of dedicating a spe-
cific agent to catch any signals, the main program file can contain:

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)
dispatcher.monitor(signal.SIGTERM)

If this interface is used however, the only means of overriding the delay between shutdown being
scheduled and actual shutdown is by the OTCLIB_SHUTDOWNDELAY environment variable.

The dispatcher also provides the member function "shutdown()". This behaves much the same as
the "scheduleShutdown()" member function of the Agent class. The presence of the "shut-
down()" member function in the dispatcher, allows code which is distinct from an agent to also
schedule a program shutdown.
35

Event Framework
Note that whatever mechanism is used to initiate program shutdown using these features, messages
will be displayed via the logger indicating that shutdown has been scheduled and that it has arrived.
Additional messages will be displayed via the logger when the shutdown process is suspended and re-
sumed.
36

Service Agents
The service agent framework in OSE provides request/reply and publish/subscribe features similar to
that found in message oriented middleware packages. Unlike most of the available packages, the serv-
ice agent framework does not have a flat namespace with respect to naming, but uses an object oriented
model, with each service having its own namespace with respect to subject names for subscriptions
and request method names.

Building on this object oriented approach, it is possible to subscribe to the existence of specific serv-
ices, or to groups of services as well as aspects of the services themselves. By using subscription to
groups, an application can be setup to dynamically handle the introduction and withdrawal of new
services rather than being hardwired. Services are also able to monitor when subscriptions occur and
identify who is making the subscription if necessary.

All the features of the service agent framework can be applied within the scope of a single process, or
across a group of distributed processes. A specific service need not even be aware that a service it
makes use of is in a remote process as the interface and means of interacting with that service are the
same. Services may therefore be moved around between processes or onto different machines and the
key parts of the application will not need to be changed.

As the Python interface is simply a wrapper on top of functionality provided by the OSE C++ class
library, you are not restricted to writing service agents in just Python. In a distributed application for
example, one process may be entirely written in C++, another may use only the Python wrappers, and
a third a mix of both if dynamic loading into a Python program were used. This flexibility means you
can use Python where simplicity is important, but C++ where better performance may be desirable.
37

Service Agents
The major classes in the OSE C++ class library involved in providing this functionality are the
OTC_SVBroker,OTC_SVRegistry andOTC_EVAgent classes along with various event classes.
In a distributed application the OTC_Exchange class comes into play along with the various classes
used to implement the interprocess communications mechanism.

Service Naming

When using the C++ class library, implementation of a service agent entails the use of a number of
different classes together. In the Python interface this has all been brought together in the Service
class. If you wish to create your own instance of a service agent, you need only derive a class from the
Service class and then instantiate it.

The most important aspect of creating a service agent is the need to assign it a name. This name is what
is used by other services to access your particular instance of a service agent. Having selected a name,
it should be supplied to the Service base class at the point of initialisation. If you wished to call your
service "alarm-monitor", the constructor of your class might look as follows.

class AlarmMonitor(netsvc.Service):
def __init__(self,name="alarm-monitor"):

netsvc.Service.__init__(self,name)

In general there is no restriction on what you can put in a service name. It is suggested though that you
avoid any form of whitespace or non printable characters so as to make debugging easier.

In assigning a name to a service agent, there is nothing to stop you from having more than one service
with the same name. Often the ability to have more than one service with the same name is useful, but
in other situations it may be regarded as an error. As a policy on how to handle more than one service
with the same name will be dependent on the actual application, implementation of any scheme to deal
with it is left up to the user.

If you want to query what the service name is for an instance of a service agent, it can be queried using
the "serviceName()" member function. If you need to know the unique identity of a service agent,
it can be queried using the "agentIdentity()" member function. Even when two services share
the same name, they will still have distinct agent identities. These as well as other details relating to a
service agent can also be obtained from the object returned by the "serviceBinding()" member
function.

Note that the Service class ultimately derives from the Agent class and as such all features of the
event system are also accessible from a service agent. The Service class also builds on the same
model used by the Agent class with respect to destruction of an object instance and the cleaning up
of circular references. As such the Service class contains a derived implementation of the "de-
stroyReferences()" member function found in the Agent class. Any derived service agent
should use this function in the same way as defined for the Agent class.
38

Service Audience
Service Audience

When you create a service, the existance of that service will be broadcast to all connected processes.
If you wish to restrict visibility of a service to just the process the service is contained in, or a subset
of the connected processes, a service audience can be defined.

To define the service audience, an extra argument needs to be supplied to the Service base class
when it is initialised. By default the service audience is "*" to indicate that knowledge of the service
should be broadcast as widely as possible. Setting the service audience to an empty string, will restrict
visibility of the service to the local process.

class AlarmMonitor(netsvc.Service):
def __init__(self,name="alarm-monitor",audience="*"):

netsvc.Service.__init__(self,name,audience)

Other values can be supplied for the service audience and their meaning will depend upon how the in-
terprocess communications links of the service agent framework are configured. This aspect of the
service audience field will be discussed when support for distributed applications is covered.

Note that in setting the service audience, you are also restricting your service agent as far as what serv-
ices it can subscribe to. If you set the service audience to that indicating the local process only, you
will only be able to subscribe to services which exist in the local process. This is because services in
remote processes will not know anything about you. If you need to be able to subscribe to services no
matter where they are, you would generally be best leaving the service audience set to the default value.

Anonymous Service

Although referred to as a service, a service agent can act in the role of either a client or server. That is,
as a client it is a user of other services and would not expect to have subscriptions made against it or
receive requests. In this situation the name assigned to the service is immaterial and it is valid to supply
an empty service name. In fact, if you do not explicitly supply a service name when initialising the
Service base class, it will default to an empty string.

class AnonymousService(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self)

In general it is still preferable to supply a non empty value for the service name. Doing so will mean
that the service agent will appear as a separate entity within any debugging tools and although the ap-
plication itself may not need to use that service agent in the role of a server, you might still include
functionality which can be used from debugging tools so you know what the service agent is doing.
39

Service Agents
Service Groups

When a service agent is created, the name of the service is notionally listed in a global group. In respect
of this global group, unless you track the coming into existance of every single service agent, there is
no way to make conclusions about a subset of services. Even if you do track the creation of every single
service agent, the only way you might be able to distinguish a service agent as belonging to some
group, is to introduce into the name of the service agent some form of artificial naming hierarchy.

Rather than rely on an artificial means of grouping service agents based on the service agent names, a
separate concept of service groups is implemented. To add a service agent to a specific group, the "jo-
inGroup()" member function can be called at any point after the Service base class has been in-
itialised. That is, adding a service agent to a service group does not specifically have to been done in
the constructor but can be done at a later time. To remove a service agent from a service group it has
joined, the "leaveGroup()" member function can be called.

class EquipmentAgent(netsvc.Service):
def __init__(self,name,audience="*"):

netsvc.Service.__init__(self,name,audience)
self.joinGroup("equipment-agents")

As with service names, it is recommended that you avoid using any form of whitespace or unprintable
characters in service group names. The empty service group should also not be used to avoid confusion
with the global group.

Service Registry

The service registry is where information about available services is recorded. Each process in a dis-
tributed applicaton has its own service registry. The service registry in a process will list any services
which are local to that process as well as any of which knowledge has been imported into the process
from a remote process.

That each process has its own service registry means that the service agent framework can work quite
happily within the context of a single process, as well as within the context of a distributed application.
That is, when you only have a single process it isn’t necessary for that process to be connected to a
central server for the system to work. In this respect, each service registry acts as a peer to other service
registries and not in a client/server mode.

A further consequence of this is that even when a process is part of a distributed application and the
central message exchange process is terminated, any processes which were connected to it are not
forced to restart themselves. In this scenario, any interested parties would be notified of the fact that
remote services are no longer accessible and would take any action as appropiate. When the central
message process is restarted, processes would automatically reconnect, with interested parties being
notified that the remote services are once more accessible.
40

Service Registry
Any service agent may make queries against its local service registry and get back an immediate result
which reflects the current state of the service registry. A service agent may also subscribe to the service
registry or aspects of it and be notified in real time of changes made to the service registry. When sub-
scribing to the service registry itself, a service agent would be notified of all available services, when
those services join or leave groups and when those services are withdrawn.

Subscribing to the service registry as a whole is a useful debugging tool as it can produce an audit trail
relating to the creation and deletion of services as well as group memberships. When used as a debug-
ging tool as well as in other cases, it may not be appropriate that a service agent be created merely that
the service registry can be queried. To this end, the member functions of the Service class relating
to the service registry are also available through the Monitor class. In fact, the Service class de-
rives from the Monitor class.

To setup a subscription against the service registry as a whole, the member function "subscrib-
eRegistry()" is used. A subscription to the service registry can later be removed using the member
function "unsubscribeRegistry()".

class RegistryMonitor(netsvc.Monitor):
def __init__(self):

netsvc.Monitor.__init__(self)
self.subscribeRegistry(self.announce)

def announce(self,binding,group,status):
if group == None:

global group
action = "WITHDRAWN"
if status == netsvc.SERVICE_AVAILABLE:

action = "AVAILABLE"
name = binding.serviceName()
identity = binding.agentIdentity()
print "SERVICE-%s: %s (%s)" % (action,`name`,identity)

else:
specific group
action = "LEAVE"
if status == netsvc.SERVICE_AVAILABLE:

action = "JOIN"
name = binding.serviceName()
identity = binding.agentIdentity()
print "%s-GROUP[%s]: %s (%s)" % \

(action,`group`,`name`,identity)

When making queries or subscriptions against the service registry, details of a specific service are re-
turned in the form of a service binding object. This is the same type of object returned by the "serv-
iceBinding()" member function of a specific service agent. Where an operation needs to refer to
a particular service it will be usually done in terms of this service binding object rather than the infor-
mation it carries.
41

Service Agents
Member functions of a service binding object which may prove useful include "serviceName()",
"agentIdentity()", "serviceAudience()", "processAddress()" and "serviceLo-
cation()". Of these, "serviceLocation()" returns either "SERVICE_LOCAL" or
"SERVICE_REMOTE", giving an indication if the service is located in the same process or a remote
process. The "processAddress()" member function will return an internal address relating to the
actual process the service is located in.

Although the shorthand "agentIdentity()" member function provides a more readable value, the
"serviceAddress()" member function is also provided and returns the internal address used to
identify the service. Note though that if in a distributed application an intermediary process along the
route to the actual service is restarted, when all processes reconnect, the service address will be differ-
ent where as the process identity and agent identity would be the same. This reflects the fact that it is
still the same service, but the route used to contact the service has now changed as the intemediary
process was restarted.

When subscribing to the service registry as a whole, each notification will also include a group and
status value. When the group is "None", the notification refers to either the availability or withdrawal
of a service. For any other value of group, it indicates that a specific service is joining or leaving that
group. Whether a service has become available or has been withdrawn, or similarly whether a service
has joined or left a group is given by the status value. When the status is "SERVICE_AVAILABLE",
a service has become available or has joined a group as appropriate. When the status value is
"SERVICE_WITHDRAWN" the service has either been withdrawn or has left a group as appropriate.

Note that when the status indicates that a service has become available it doesn’t mean that the service
only just got created. In the case that a service is in a remote process, it may be the case that a service
has existed for some time, but because the local process has only just connected into a distributed ap-
plication it has only just become aware of that fact.

Similarly, when a service is withdrawn, if the service was in a remote process it means the service can
no longer be contacted. This may have occurred because the service itself has been destroyed, the proc-
ess in which the service existed has been destroyed or that an intemediary process involved in the com-
munication path for contacting that process has been destroyed and the remote process is currently no
longer contactable.

By subscribing to the service registry it is possible to receive in real time notitifications regarding the
availability of services as such events happen. If you only wish to find out which services are available
at a particular instant in time, you can use the "serviceAgents()" member function. Note that de-
pending on the number of service agents available, calling this member function repetitively can incur
significant overhead. If possible this member function should be used sparingly and a subscription
against the service registry used instead.
42

Service Announcements
Service Announcements

If a service agent subscribes to the registry using a specific service name, the service agent will be no-
tified when any service with that name becomes available or is subsequently withdrawn. When sub-
scribing to the registry using a specific service name, no notification is given regarding groups that
those same services may join.

class ServiceMonitor(netsvc.Monitor):
def __init__(self,name):

netsvc.Monitor.__init__(self)
self.subscribeServiceName(self.announce,name)

def announce(self,binding,status):
action = "WITHDRAWN"
if status == netsvc.SERVICE_AVAILABLE:

action = "AVAILABLE"
name = binding.serviceName()
identity = binding.agentIdentity()
print "SERVICE-%s: %s (%s)" % (action,`name`,identity)

The name of the member function for subscribing to the existance of a service agent by name is "sub-
scribeServiceName()". A subscription can be cancelled by calling the member function "un-
subscribeServiceName()".

Having identified a particular service agent, it is often useful to know when that specific service agent
is no longer available. The notifications provided when you call the member function "subscribe-
ServiceName()" will tell you that, but if the service binding had been received through some other
means and you weren’t receiving the notifications, it is preferable that you be able to receive a notifi-
cation just in relation to the specific service agent you are using. In this case, the service address can
be obtained from the service binding by calling "serviceAddress()" and the member function
"subscribeServiceAddress()" used instead. This subscription can be cancelled by calling the
"unsubscribeServiceAddress()" member function.

class ClientService(netsvc.Service):
def __init__(self,binding):

netsvc.Service.__init__(self)
address = binding.serviceAddress()
self.subscribeServiceAddress(self.announce,address)
self._binding = binding
start using service

def self.announce(self,binding,group,status):
if group == None:

if binding.agentIdentity() == self._binding.agentIdentity():
if status == netsvc.SERVICE_WITHDRAWN:

self.unsubscribeServiceAddress(binding.serviceAddress())
self._binding = None
stop using service
43

Service Agents
Group Announcements

If a service agent subscribes to the service registry using a specific service group, it will be notified
when any service joins or leaves that group. Notice that a service has left a particular group will also
be be notified when the service is withdrawn and the service hadn’t explicitly left the group before
hand. The member functions relating to service group subscriptions are "subscribeService-
Group()" and "unsubscribeServiceGroup()".

Subscription to a service group is most often used as a way of finding out what services exist which
perform a certain function. As an example, service agents which provide an interface to equipment in
a telecommunications network could join a particular group. A service which has the task of monitor-
ing alarms generated by the same equipment could then subscribe to that service group and be notified
about each equipment agent. Knowing about each equipment agent, the alarm monitor could then sub-
scribe to any alarm reports generated by the equipment agents.

class EquipmentMonitor(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self,"equipment-monitor")
self.subscribeServiceGroup(self.announce,"equipment-agents")

def announce(self,binding,group,status):
if status == netsvc.SERVICE_AVAILABLE:

self.monitorReports(self.alarm,binding,"alarm.*")
else:

self.ignoreReports(binding)
def alarm(self,service,subject,content):

print subject,content

By using a service group it is therefore possible to make an application respond dynamically to the in-
troduction of new service agents. In the case of the equipment alarm monitor for a telecommunications
network, it would not be necessary to hardwire in details of the equipment. Instead, when adding a new
piece of a equipment, the service agent providing an interface to that equipment need only add itself
to the appropriate service group.

Such a mechanism could also be used to monitor alarms raised as a result of problems in the application
itself and need not be alarms generated by some piece of equipment. This mechanism could therefore
also be used as the basis of an application health monitoring system.

Service Lookup

The ability to subscribe to the service registry provides a means of tracking the existance of service
agents over time. The alternative to subscribing to the service registry to find out about available serv-
ices, is to do a lookup against the service registry. Performing a lookup will tell you immediately what
service agents exist at that particular point in time. No subscription will be registered when doing a
lookup though, so if you need to know when a service agent is subsequently withdrawn it still may be
appropriate to subscribe to the registry using the address of the specific service agent you use.
44

Service Lookup
class PollingService(netsvc.Service):
def __init__(self,name,period=60):

netsvc.Service.__init__(self)
self._name = name
self._period = period
self.initiateRequests("poll")

def initiateRequests(self,tag):
bindings = self.lookupServiceName(self._name)
for binding in bindings:

service = self.serviceEndPoint(binding)
presume remote service provides uptime method
id = service.uptime()
self.processResponse(self.handleResult,id)

self.startTimer(self.initiateRequests,self._period,"poll")
def handleResult(self,result):

address = self.currentResponse().sender()
binding = self.lookupServiceAddress(address)
if binding != None:

print binding.agentIdentity(),result

A number of different types of lookup can be made against the service registry. The first two allow you
to lookup all service agents which have a particular service name, or all service agents which are cur-
rently a member of a specific service group. The two member functions corresponding to these lookups
are "lookupServiceName()" and "lookupServiceGroup()". Both these lookup functions
return a list of service binding objects corresponding to the service agents found. If there are no service
agents matching the search criteria, an empty list is returned.

The third type of lookup is that of looking up a specific service agent using its service address. In this
case you will need to have been able to obtain the service address by some other means first. The mem-
ber function here is "lookupServiceAddress()". The result will be the service binding object
corresponding to that service agent, or None if the service agent is no longer available.

In order to obtain a list of all services known of by the service registry, the member function "serv-
iceAgents()" can be used. This should however be used sparingly because of the overhead which
might be incurred when there are large numbers of services. If possible, subscription against the serv-
ice registry should still be used if it is necessary to track all available services. Overhead can be reduced
by using subscription and caching the results as Python data structures, with Python objects accessing
the cache directly. This avoids the translation from C++ data structures to Python data structures.

Similarly to service agents, a list of all service groups can be obtained by calling the member function
"serviceGroups()". If it is necessary to determine which service groups a particular service agent
is a member of, an optional argument can be supplied to "serviceGroups()", that argument being
the service address of the service agent of interest.
45

Service Agents
46

Service Reports
When using the service agent framework, in addition to being able to subscribe to the service registry
in order to receive announcements regarding the existence of services, it is also possible to subscribe
to actual services. When subscribed to a service, if that service publishes a report with a subject match-
ing the subscription, the subscriber will automatically receive it.

Referred to as publish/subscribe, this is a common feature of packages implementing message oriented
middleware services. Note that in this implementation, the design and interface are driven by simplic-
ity. As a result, the implementation is not underlaid by persistent message queues. While a subscriber
exists and is known of by the publisher, it will receive any reports for which it has a valid subscription.
If a subscriber is destroyed but is subsequently restarted, it will only receive reports published from
that time onwards, it will not receive reports which may have been published in the time that it was
offline.

The system design can therefore be likened to a system implementing instant messaging as opposed to
a mailing list. In instant messaging you will only see those messages which are posted into a group
while you are online, whereas with a mailing list any messages posted while you were away will still
be there for you to see when you log back in.

As a basic system, this model of operation is suitable for many applications, but not all. If you are de-
veloping a system where it is imperative that you never miss a message, you would be advised to pur-
chase a commercial message oriented middleware package. You will of course have to deal with the
extra complexity and cost that entails.
47

Service Reports
Publishing Reports

If a service agent needs to publish a report, the member function "publishReport()" is used. In
publishing a report, it will generally be the case that a service agent does it without caring who may
actually be subscribed to that report. This is often referred to as anonymous publishing and results in
a more loosely coupled system which can adjust dynamically to changes. That is, it is not necessary to
hardwire into a service to whom it should send a report, instead, a service which is interested in the
report will subscribe to it and the underlying system will handle everything else.

self.publishReport("subject.string","value")
self.publishReport("subject.integer",12345)
self.publishReport("subject.float",1.2345)
self.publishReport("subject.list",[1,2,3,4,5])
self.publishReport("subject.dict",{"one":1,"two":2})

When publishing a report, a service agent needs to supply a subject which in some way identifies the
purpose of the report, as well as the content of the report. It is through subscription to specific subjects
that subscribers will indicate their interest in specific reports. The subject name assigned to a report
can have any value, but it is suggested that a hierachical naming convention be used. That is, use one
or more name components, where each component is separated by a period.

heartbeat
news.local.sanitation
news.domestic.politics
notifications.shutdown

By using a naming hierarchy, it becomes possible to aggregate reports into groupings which can then
be easily subscribed to as a whole. Note that there is nothing special about a period as the separator for
the name components. Other separators which are often used for performing the same task are a slash
or a colon.

Monitoring Reports

A desire to subscribe to reports published by another service is indicated by a service agent calling the
"monitorReports()" member function. In setting up such a subscription, the service agent must
supply a callback function to be called when a report is received, the name of the service or the service
binding object of the specific service agent to which it is subscribing and an indication of what reports
it is interested in.

In the simplest case, a subscription can supply the exact same subject name under which a report is
published. Alternatively, it can use special wildcard characters to allow it to pick up reports published
against related subjects. The two special wildcard characters which can be used are "*" and "?". These
can be incorporated anywhere in the subscription pattern.

The "?" can be used to match a single character within the subject name, where as a "*" will match
any number of characters. Note that each will match any character, including a period or slash. As such,
48

Monitoring Reports
a subscription of "system.*" will match "system.time" and "system.statistics.us-
ers", but not "system". To subscribe to any reports from a particular publisher, "*" would be used.

Note that the subscription pattern described here is the default. It is actually possible within the C++
implementation of a service agent to override the default and supply an alternate matching algorithm.
For example, in a bridge to the TIB/Rendevous package, a service agent would most likely redefine
the matching algorithm to match that of that package. Therefore, when subscribing to a service agent,
always check first exactly which scheme it uses.

class Publisher(netsvc.Service):
def __init__(self):

netsvc.Service.__init__("publisher")
self.joinGroup("publishers")
self.publishReport("system.ctime",netsvc.DateTime(),-1)
self.startTimer(self.timeout,10,"heartbeat")

def timeout(self,tag):
self.publishReport("system.time",netsvc.DateTime())
self.startTimer(self.timeout,10,"heartbeat")

class Subscriber(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self)
subscribe to any service agent with name "publisher"
self.monitorReports(self.report,"publisher","system.*")

def report(self,service,subject,content):
binding = self.currentReport().publisher()
identity = binding.agentIdentity()
publisher = "(%s/%s)" % (‘service‘,identity)
if subject == "system.ctime":

now = str(netsvc.DateTime())
print "%s became available at %s" % (publisher,now)
print "%s originally started at %s" % (publisher,str(content))

elif subject == "system.time":
print "%s was still alive at %s" % (publisher,str(content))

When called, the callback supplied by the subscriber will be passed three arguments. These are the
service binding object for the service agent which published the report, the subject under which the
report was published and the content of the report.

The service binding object for the service agent which published the report is provided for a number
of reasons. The first is that since more than one service agent may use the same service name, it is pos-
sible that a subscription based on service name might result in responses from more than once service
agent. The service binding object is therefore supplied so that it is possible to distinguish from whom
a report originated. The service binding object may also be used to identity a particular service agent
and send a request to it. This may be less of an issue if when subscribing to a service agent, the service
binding object for the specific service agent of interest is used as opposed to a service name. This elim-
inates the possibility of getting reports from unrelated service agents using the same service name.
49

Service Reports
class Subscriber(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self)
subscribe to the service group "publishers"
self.subscribeServiceGroup(self.announce,"publishers")

def announce(self,binding,group,status):
if status == netsvc.SERVICE_AVAILABLE:

now subscribe to service agent which is member of group
self.monitorReports(self.report,binding,"system.*")

else:
self.ignoreReports(binding)

def report(self,service,subject,content):
binding = self.currentReport().publisher()
identity = binding.agentIdentity()
publisher = "(%s/%s)" % (‘service‘,identity)
if subject == "system.ctime":

now = str(netsvc.DateTime())
print "%s became available at %s" % (publisher,now)
print "%s originally started at %s" % (publisher,str(content))

elif subject == "system.time":
print "%s was still alive at %s" % (publisher,str(content))

As expected, the subject is that under which any report was published. As to the content of the report,
this is not limited to being a string, but can be any of the basic Python scalar types, a list, tuple or dic-
tionary, as well as the None type and a number of extended types. User defined scalar types can also
be used providing that appropriate encoders/decoders are available.

If you wish to cancel a subscription to a service, the "ignoreReports()" member function should
be used. This should be supplied the name of the service and the exact same subject pattern used when
subscribing to the reports in the first place. If no subject pattern is supplied, all subscriptions against
that service name will be removed.

Lifetime of Reports

When publishing a report, the report will be sent to any service agents which have a current subscrip-
tion which matches the subject associated with the report. The default behaviour is then such that the
publishing service forgets all about the report. In this case, if a new subscription arrived immediately
after, it would only be sent any reports which were published after its subscription was received. The
new subscriber would not receive a copy of the report which was published just before its subscription
was received.

In some situations however, it is desirable that a new subscriber be able to obtain the last report which
may have been published against any subject it is interested in. This is useful in the context that a report
is used to reflect the status of a service. By being able to obtain the last published report, a subscriber
can know the current state of the service immediately and doesn’t have to explicitly request it or wait
for the status to change.
50

Lifetime of Reports
For such cases, it is possible to supply an optional lifetime for a report. That is, a time in seconds for
which the report should be cached by the publishing service. When such a value is supplied, if a sub-
scription arrives within that time, it will be sent a copy of that report. If a value of "-1" is supplied for
the lifetime, it will effectively cache the report indefinitely.

publish and cache indefinitely
self.publishReport("system.status","idle",-1)

publish and cache for 60 seconds
self.publishReport("system.action","twiddle thumb",60)

publish but don’t cache
self.publishReport("system.thought","bored")

A cached report will only be discarded if a new report is published against the same subject, or the
lifetime specified expires. If a new report published against the same subject has no lifetime associated
with it, the cached report will be discarded, but the new report will not be cached. Note that with this
mechanism, only the last report published on a specific subject will ever be cached when a lifetime
value is provided.

To make the implementation as simple as possible, a report which has been cached against a subject
with a finite lifetime and which has expired, will only be discarded when a new report with the same
subject name is published, or a new subscription arrives which would have matched the subject. This
is done to avoid having to setup internal timers to trigger destruction of the report at the moment it ex-
pired.

A consequence of this approach however, is that a report may consume resources unnecessarily be-
yond the lifetime which it was supposed to exist. If this becomes an issue, it is possible for a service
agent to periodically purge any expired reports itself. This can be done by calling the member function
"purgeReports()".

class Publisher(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self,"publisher")
purge expired reports every 15 minutes
self.scheduleAction(self.purgeReports,"*/15 * * * *")

In addition to being able to explicitly purge expired reports for performance reasons, a service agent
may also prematurely expire and purge reports which are older than a certain time. The member func-
tion for this is "expireReports()" and accepts a subject pattern and optional age in seconds. The
age defaults to "0" which would result in any cached report matching the subject pattern being imme-
diately expired and purged. If a non zero value for age is supplied, only reports which were older than
that age would be expired and purged. To apply this to all cached reports, regardless of subject, the
"expireAllReports()" member function can be used.
51

Service Reports
Although "purgeReports()" exists specifically to deal with potential performance issues in a very
limited number of cases, the "expireReports()" and "expireAllReports()" member func-
tions are useful where a service may have reset itself and it was necessary to discard all cached reports
so that new subscribers didn’t receive them.

Identity of Subscribers

In most circumstances the identity of a subscriber is not important, however, such information can be
quite useful in a few circumstances. At present this information is available by overriding a method in
the service agent base class.

class Publisher(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self,"publisher")
def handleSubscription(self,subscription):

subscriber = subscription.subscriber()
if subscription.status() == netsvc.SUBSCRIPTION_REQUESTED:

if self.matchSubject(subscription.subject(),"system.time"):
self.sendReport(subscriber,"system.time",netsvc.DateTime())

One can use this feature in preference to caching reports when they are published. That is, rather than
caching a report when it is published so that a new subscriber automatically receives it, generate the
report only when the subscription arrives. Obviously however, in this approach we would only want
to have the report sent to the particular subscriber and not to all subscribers as they would potentially
get duplicates otherwise.

To cater for this scenario, the member function "sendReport()" is supplied. In this variant of report
publishing, the first argument is the service binding object of the subscriber obtained from the sub-
scription notification. This report will only be sent to the subscriber in question and will not be cached.
Note that if a report was also cached against the subject in question, the subscriber would still receive
it as well. Both anonymous publishing and targeted reports should therefore not be used in combination
for a specific subject as it may give undesired results.

The member function "matchSubject()" is supplied to assist in determining if the subject pattern
contained in the subscription matches that of a particular subject. The first argument to "matchSub-
ject()" should be the pattern and the second the actual subject. Although not used here, the opposite
to the status value "SUBSCRIPTION_REQUESTED" is the value "SUBSCRIPTION_WITHDRAWN".

Note that if the "sendReport()" member function is used to send a report and the recipient has a
subscription against the publishing service, but doesn’t have a subscription against that service match-
ing that subject, the report will not be delivered via the callback it originally supplied with its subscrip-
tion. A similar situation is where a service receives an unsolicited report, or had since unsubscribed
from the reports. In these cases there is no current callback in place for reception of the report. When
this occurs the member function "unexpectedReport()" will be called. A service agent may if it
desires override this member function so as to deal with any such unexpected reports.
52

Identity of Subscribers
A further use of the mechanism for identifying a subscribers identity, is so that subscriptions can be
tracked and for processing or interception of data only to be undertaken while there are subscribers in-
terested in the results. This avoids unnecessarily publishing reports when it is known there would be
no one to send them to.

class LogMonitor(netsvc.Service):
def __init__(self):

name = "logmon@%s" % netsvc.processIdentity()
netsvc.Service.__init__(self,name)
self._logger = netsvc.Logger()
self._channels = {}

def notify(self,channel,level,message):
agent = channel[1:-1]
report = {}
report["agent"] = agent
report["level"] = level
report["message"] = message
self.publishReport(agent,report)

def handleSubscription(self,subscription):
agent = subscription.subject()
channel = "(%s)" % agent
if subscription.status() == netsvc.SUBSCRIPTION_REQUESTED:

if len(agent) != 0:
subscriber = subscription.subscriber().agentIdentity()
if not self._channels.has_key(channel):

self._channels[channel] = []
self._logger.monitorChannel(channel,self.notify)
self._channels[channel].append(subscriber)

else:
if self._channels.has_key(channel):

subscriber = subscription.subscriber().agentIdentity()
if subscriber in self._channels[channel]:

index = self._channels[channel].index(subscriber)
del self._channels[channel][index]
if len(self._channels[channel]) == 0:

del self._channels[channel]
self._logger.monitorChannel(channel,None)

logger = netsvc.Logger()

class Publisher(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self,"publisher")
self._channel = "(%s)" % self.agentIdentity()

def debug(self,message):
logger.notifyChannel(self._channel,netsvc.LOG_DEBUG,message)

In this use of subscription information, the subscription to a specific subject is used to trigger intercep-
tion of messages logged via the logger interface. For the time that subscriptions exist for a particular
53

Service Reports
subject corresponding to a log channel, the log messages on that log channel will be intercepted and
published. This can be useful as a remote debugging mechanism and will not unnecessarily load the
process as information is only being captured and published when it is actually required.

Existence of Publishers

When a subscription to a service is made, if the service holds any cached reports with a subject match-
ing the subscription, the subscriber will receive them immediately. If however there were no such re-
ports, the subscriber will not receive any reports until some are published having a subject which
matched its subscription. Even when there are reports which can be sent back immediately, if there are
reports against multiple subjects, there is no guarantee as to which order they will be received in.

As a consequence, using the reception of a report as an indicator that a service has become available
is not a good approach to take. This is because a report may not be received until some time after the
service became available and the subscription accepted. Further, there is no indication when the service
is no longer available.

One way as previously described of knowing when a service becomes available or when it is with-
drawn, is to subscribe to the service registry. Although this will work, if you have restricted the service
audience of your service agent, it will also possibly tell you about services outside of the scope of what
you can subscribe to.

To avoid this difficulty, the member function "handlePublisherNotification()" is provid-
ed. This member function can be overridden in your service agent and will be called only when a sub-
scription has been matched up and accepted by the service being subscribed to. Note that this
notification will only occur for the first subscription against a particular service agent.

This member function will also be called to acknowledge withdrawal of the last subscription against a
particular service agent, or when a service agent to which you were subscribed has been withdrawn.

class Subscriber(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self)
self.monitorReports("publisher","*")

def handlePublisherNotification(self,notification):
name = notification.publisher().serviceName()
identity = notification.publisher().agentIdentity()
publisher = "(%s/%s)" % (‘name‘,identity)
if notification.status() == SERVICE_AVAILABLE:

print "%s AVAILABLE" % publisher
else:

print "%s WITHDRAWN" % publisher

Knowledge of when a subscription has been accepted or when the service agent subscribed to has been
withdrawn can be useful when there is more than once service agent with the same name, and it is nec-
54

Existence of Publishers
essary to track the lifetime of each. It is also useful where it might be necessary to immediately send
off a request to each service agent to obtain information not available via published reports.
55

Service Reports
56

Service Requests
The ability within the service agent framework to find out what services exist and the ability of a serv-
ice agent to publish reports can be useful in itself, but more often than not one wants to make a specific
request of a service to perform some action. In most cases such an action would result in a response,
be it the return of data related to the request being made or an error indication. Referred to as request/
reply, this is probably the most fundamental feature of message oriented middleware software.

As with the implementation of the publish/subscribe feature, simplicity has been a major driving force
in influencing the design. As a result, the implementation of the request/reply feature should not be
likened to that of point to point messages using persistant messages queues. In this implementation, if
a service to which you want to send a request doesn’t exist you will not be able to send your request,
nor is a service able to receive any requests sent when it wasn’t running.

Although persistant message queues are not a feature of this implementation, the request/reply and
publish/subscribe features can actually be seen as sitting at a lower level of abstraction. As a result, it
would be possible to build on top of these features and implement persistent message queues and gau-
ranteed modes of delivery if required. For many systems such features aren’t required though, so they
are not implemented with the aim being to make the software as simple as possible to use and under-
stand.

Sending a Request

In order to send a request to a service you need to first obtain a service endpoint object. This is a special
Python object which holds an internal reference to the service binding object for the service and which
will automatically dispatch your request for you. To obtain a service endpoint, the member function
"serviceEndPoint()" is used.
57

Service Requests
When invoking "serviceEndPoint()", the member function needs to be supplied with either a
service binding object for the particular service agent to which you wish to send the request, or the
name of the service. When a service name is supplied, a lookup will be made against the service reg-
istry and the first service agent found with that service name will be used.

To invoke the request against the remote service agent, the service endpoint object is used as a proxy.
That is, a member function call is made against the object as if it were the actual service object you
wished to call. The only difference is that the call isn’t synchronous but asynchronous. This means that
the result is not returned immediately.

As to the parameters to the call, multiple arguments can be supplied, with any of the basic Python sca-
lar types, a list, tuple, dictionary, the None type, as well as a number of extended types being able to
be used. User defined scalar types can also be used providing that appropriate encoders are available.
Note that keyword arguments cannot be used and will be ignored.

class PagerClient(netsvc.Service):
def __init__(self,number,message):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

service.send(number,message)

When a service endpoint is created by using a service name, you should always check whether a serv-
ice agent with that name could actually be found. This is done by doing a truth test against the service
endpoint object or comparing it to None. Note that although it may equate to None, the service end-
point object is a distinct object in its own right. If you don’t check the validity of the service endpoint
object and still make a request against the service, a special exception indicating that such a service
isn’t available will be raised.

class PagerClient(netsvc.Service):
def __init__(self,number,message):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
try:

service.send(number,message)
except netsvc.ServiceUnavailable:

...

Obviously the service name by itself can only be used if you don’t care which instance of a service is
used when there is more than one. If you wanted to select a specific service agent, or wanted to be able
to send a request to all service agents with the same service name, you would need to perform a lookup
against the service registry to obtain the full list of service agents.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
bindings = self.lookupServiceName(name)
58

Handling a Response
for binding in bindings:
service = self.serviceEndPoint(binding)
if service:

service.reset()

Handling a Response

When you send a service request, you do not get an immediate response back. That is, the call is asyn-
chronous. If you want to be able to capture any response generated from a request, you need to capture
the conversation id associated with the request and then register a callback to handle the response. The
conversation id is the value returned when you make the call against the service endpoint object. Hav-
ing obtained the conversation id you must then register a callback to handle the response using the
member function "processResponse()". If you also want to be notified that the request has
failed, you will also need to set up a separate callback using the "processFailure()" member
function.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processReponse(self.uptimeResponse,id)
self.processFailure(self.uptimeFailure,id)

def uptimeResponse(self,result):
print result

def uptimeFailure(self):
print "failure"

The callbacks which you put in place to handle the result and/or failure will be automatically deregis-
tered when a response is received. This will be the case whether the response is valid or was a failure
indication. Prior to having received a response, if you decide you are no longer interested in the re-
sponse, you can call the member function "ignoreResponse()" supplying the conversation id. If
you are submitting multiple requests in one go, you must call the "processResponse()" and/or
"processFailure()" member functions for a conversation id before you send any subsequent re-
quest.

Note that prior to the release of OSE 7.0pl5, instead of using the "processResponse()" and
"processFailure()" member functions, one would use the "monitorResponse()" method.
This method in effect combined the operation of both of the new methods albeit it with subtle differ-
ences as far as the arguments the callback would be passed and the functionality it implemented. Using
the new methods it is possible to register separate callbacks for handling of the result versus a failure.
It is even possible to only register interest in one or the other of the result or a failure notification. The
"monitorResponse()" member function should as a result now be viewed as deprecated and
should not be used.
59

Service Requests
Identifying a Response

If a callback is being registered to handle the response from multiple service requests, you will most
likely need to be able to identify to which request a response belongs to. To get the conversation ID of
the original request, the "conversationId()" member function can be called.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
bindings = self.lookupServiceName(name)
for binding in bindings:

service = self.serviceEndPoint(binding)
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
print "request",binding.agentIdentity(),id

def uptimeResponse(self,result):
id = self.conversationId()
print "result",id,result

Instead of requesting the conversation id, it is also possible to define your callback so as to take two
arguments instead of one, these being the conversation id and the result instead of just the result.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
bindings = self.lookupServiceName(name)
for binding in bindings:

service = self.serviceEndPoint(binding)
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
print "request",binding.agentIdentity(),id

def uptimeResponse(self,id,result):
print "result",id,result

These are not keyword arguments, but positional parameters which the code which calls the callback
function supplies or not based on the number of arguments the callback accepts. In other words, the
callback must accept the appropriate number of arguments as necessary and in the specified order. If
you know that the remote method being called doesn’t actually return a valid response, ie., it returns a
void or null response, you can even leave out the parameters altogether.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
bindings = self.lookupServiceName(name)
for binding in bindings:

service = self.serviceEndPoint(binding)
if service:
60

Detecting a Failure
id = service.reset()
self.processResponse(self.resetResponse,id)
print "request",binding.agentIdentity(),id

def resetResponse(self):
print "result"

In addition to "conversationId()" the member function "currentResponse()" is also
available. This member function returns an object providing both the "conversationId()" and
"sender()" member functions. If you need the service binding object for the service agent who sent
the response, you can perform a lookup against the service registry using the service address provided
by "sender()". Note though that you shouldn’t assume that the service binding object will be avail-
able as the remote service may have been withdrawn by the time you make your query.

Detecting a Failure

If you send a service request to a service agent and you need to detect if a failure occurs, you will need
to have registered a callback using the "processFailure()" member function. A failure may oc-
cur due to the service not supplying a method to handle the request you made, an incorrect number of
arguments being supplied, an error within the method being called or because the remote service agent
was withdrawn before a response was received.

When a failure does occur, the details of the failure can be obtained in a number of ways. If the callback
you provide doesn’t take any arguments, you can obtain a failure object detailing the error which oc-
curred by calling the "currentFailure()" member function. The member functions provided by
the failure object are "error()", "description()", "origin()" and "details()". The con-
versation id associated with the request which failed can be obtained using the member function
"conversationId()".

Of the member functions provided by the failure object, the "error()" member function returns an
integer error code. The "description()" member function returns a text description of the error.
The "origin()" member function returns a string which in some way identifies the origin of the er-
ror and "detail()" may contain as text, extra details relating to the error which has occurred.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
self.processFailure(self.uptimeFailure,id)

def uptimeResponse(self,result):
print result

def uptimeFailure(self):
id = self.conversationId()
failure = self.currentFailure()
61

Service Requests
if failure.origin() == "netsvc" and \
failure.error() == netsvc.SERVER_METHOD_UNAVAILABLE:

method didn’t exist

As an alternative to using the "conversationId()" member function to obtain the conversation
id of the failed request, if the callback accepts a single argument, the conversation id will be passed as
an argument to the callback function.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
self.processFailure(self.uptimeFailure,id)

def uptimeResponse(self,result):
print result

def uptimeFailure(self,id):
failure = self.currentFailure()
if failure.origin() == "netsvc" and \

failure.error() == netsvc.SERVER_METHOD_UNAVAILABLE:
method didn’t exist

This ability to have details of the failure supplied as arguments to the callback function also extends to
the contents of the failure object if the callback function accepts an additional four parameters in ad-
dition to that for the conversation id.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
self.processFailure(self.uptimeFailure,id)

def uptimeResponse(self,result):
print result

def uptimeFailure(self,id,error,description,origin,details):
if origin == "netsvc" and error == netsvc.SERVER_METHOD_UNAVAILABLE:

method didn’t exist

These are not keyword arguments, but positional parameters which the code which calls the callback
function supplies or not based on the number of arguments the callback accepts. In other words, the
callback must accept the appropriate number of arguments as necessary and in the specified order.
62

Lack of Response
Lack of Response

When you send a request, there is no gaurantee that the remote service agent hasn’t been destroyed
even before it receives your request. If a remote service agent delays sending an immediate response
to your request, the problem might also arise that the remote service agent is destroyed before it com-
pletes the response. Finally, an intermediate process relaying your request might be shutdown or crash
meaning either the request or response is lost.

In order to handle these situations, when the "processFailure()" member function is used to reg-
ister interest in the failure of a request, it will automatically setup a subscription on the existance of the
remote service agent against which the request has been made. In the event that the remote service
agent becomes unavailable before a response is received, an application error will be returned as a fail-
ure to provide notification of this occuring.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
self.processFailure(self.uptimeFailure,id)

def uptimeResponse(self,result):
print result

def uptimeFailure(self,id,error,description,origin,details):
if origin == "netsvc" and error == netsvc.SERVER_APPLICATION_ERROR:

request has failed, possibly because no response was received

Note that the "monitorResponse()" member function which has been made deprecated as of OSE
7.0pl5, does not setup a subscription to the existance of the remote service agent. Thus, if you are using
this older member function to catch the failure of a request, you will not get any failure notification in
these circumstances.

Although the "processFailure()" member function will ensure that a failure is returned if no re-
sponse is received prior to the remote service agent becoming unavailable, programming errors or ex-
ternal communications failures in code associated with the remote service agent might still result in no
response being received where the remote service agent still exists. If this is an issue and you also want
to implement a timeout whereby if no response has been received within a certain period of time, a
timeout value can be supplied when you call the "processFailure()" member function.

class Client(netsvc.Service):
def __init__(self,name):

netsvc.Service.__init__(self,"","")
service = self.serviceEndPoint("SMS")
if service:

id = service.uptime()
self.processResponse(self.uptimeResponse,id)
63

Service Requests
self.processFailure(self.uptimeFailure,id,60)
def uptimeResponse(self,result):

print result
def uptimeFailure(self,id,error,description,origin,details):

if origin == "netsvc" and error == netsvc.CLIENT_REQUEST_TIMEOUT:
timeout occurred

When a timeout occurs, it will be notified as a request failure. The timeout should be the maximum
number of seconds to wait. The callback will be automatically deregistered and if the response did sub-
sequently arrive it would be ignored. If you wanted a timeout to occur but didn’t want the callback to
be deregistered, you would need to create your own timer. If that timer uses the conversation id corre-
sponding to the request as the timer name, the timer will be automatically stopped if a response does
actually arrive. You should not use the conversation id to set up a timer if you have already defined a
timeout when calling the member function "processFailure()" as internally it will use the con-
versation id for its own timer.

Servicing a Request

When you send a request, if the remote service agent is implemented using the Python interface, not
just any member function of the service can be called. In order that a member function of a service can
be called, the service agent must have exported it as a public method. This is done by calling the mem-
ber function "exportMethod()" and it would normally be done from within the constructor of the
service agent.

class PagingService(netsvc.Service):
def __init__(self,name="SMS"):

netsvc.Service.__init__(self,name)
self.exportMethod(self.time)
self.exportMethod(self.uptime)
self.exportMethod(self.send)

def time(self):
return netsvc.DateTime()

def uptime(self):
...

def send(self,number,message):
...

By default the method name associated with the member function will be its actual name. If you wish
to export a member function under a different method name, the method name can be supplied as an
extra argument to the "exportMethod()" member function.

class PagingService(netsvc.Service):
def __init__(self,name="SMS"):

netsvc.Service.__init__(self,name)
self.exportMethod(self.sendMessage,"send")

def sendMessage(self,number,message):
...
64

Generating a Failure
The reason for requiring that methods be explicitly exported is that it would usually be quite dangerous
to allow open access to all member functions of a class. This is because any class is likely to implement
methods to assist in intermediate stages of processing a request. Providing automatic access to such
member functions could compromise the operation of the class.

When a method is invoked as a result of a service request, the default behaviour will be that the value
returned from the method will be what is returned to the caller as the response. If necessary, a method
may explicitly indicate that a failure response should instead be returned. A method can also indicate
that a delayed response will be sent. This latter case is useful when the service needs to do something
first in order to generate a suitable response.

Generating a Failure

If a method encounters an error and raises an exception this will be caught by the service agent frame-
work and a failure response will be generated. The value of the origin for this type of failure will be
"netsvc" and the value of the error code will be "SERVER_APPLICATION_ERROR". If you want
to generate a failure response which is specific to your application, you should catch any exceptions
and indicate the type of failure response by calling the member function "abortResponse()".

class Database(netsvc.Service):
def __init__(self,name="database",**kw):

netsvc.Service.__init__(self,name)
self._database = MySQLdb.connect(**kw)
self.exportMethod(self.execute)

def execute(self,query,args=None):
try:

cursor = self._database.cursor()
cursor.execute(query,args)
if cursor.description == None:

return cursor.rowcount
return cursor.fetchall()

except MySQLdb.ProgrammingError,exception:
details = netsvc.exceptionDetails()
self.abortResponse(1,"Programming Error","db",details)

except MySQLdb.Error,(error,description):
self.abortResponse(error,description,"mysql")

The four arguments to the member function "abortResponse()" are the error code, the description
of the error, the origin and any additional details. It is recommended that an origin which clearly iden-
tifies the source of the error, or namespace from which the error codes are derived always be used. If
an origin is not used, it becomes impossible to programmatically deal with an error when different as-
pects of a service generate overlapping error code sets.

Note that the "abortResponse()" member function will in turn raise its own special exception.
When this exception is caught by the service agent framework, it will be translated into a failure re-
sponse as described by the arguments used to call "abortResponse()". As a new exception is
65

Service Requests
raised, you should avoid an except clause which catches all exceptions in any code which encloses
code which might call "abortResponse()". Alternatively, you should explicitly pass on excep-
tions of type ServiceFailure.

try:
self.execute(...)

except netsvc.ServiceFailure:
raise

except:
self.abortResponse(...)

If many of the public methods of a service generate the same type of exceptions, rather than provide
code to catch the exceptions in every method, it is possible to override the member function "exe-
cuteMethod()". This member function is called by the service agent framework to call the actual
member function referred to by a service request. It is important to preserve the existing functionality
of this method otherwise service requests will not execute correctly.

class Database(netsvc.Service):
...
def executeMethod(self,name,method,params):

try:
return netsvc.Service.executeMethod(self,name,method,params)

except MySQLdb.ProgrammingError,exception:
details = netsvc.exceptionDetails()
self.abortResponse(1,"Programming Error","db",details)

except MySQLdb.Error,(error,description):
self.abortResponse(error,description,"mysql")

The member function "executeMethod()" might also be overridden if you want to track what re-
quests are being made against a service. The arguments to the member function are the name of the
method, the actual member function and the parameters to be supplied when the member function is
called.

Delaying a Response

In a distributed application, it is sometimes the case that when a method is called it doesn’t have the
information necessary to generate an immediate response. This may be the case where it needs to ini-
tiate its own service requests to accumulate the data needed to generate the result. Because the service
agent framework is based on an event driven system, it is not possible for the method to simply block
waiting for its own data. This is because the method must return before anything else can execute.

To deal with this, the member functions "suspendResponse()" and "resumeResponse()" are
provided. If the "suspendResponse()" member function is called, it will raise an exception which
will be caught by the service agent framework. The name of this exception is DelayedResponse
and lets the service agent framework know that a response will be sent at a later time.
66

Delaying a Response
When the member function "suspendResponse()" is called, a callback function should be sup-
plied as argument which finalises the request and returns the appropriate result. The callback passed
to "suspendResponse()" will only be called when the "resumeResponse()" method is called
at some later point in time. In particular, you would call "resumeResponse()" once you have col-
lected together all the data which forms the result for the original request.

class DatabaseProxy(netsvc.Service):
def __init__(self,name="database-proxy")

netsvc.Service.__init__(self,name):
self.exportMethod(self.tablesRequest,"tables")
self._request = {}
self._result = {}

def tablesRequest(self):
service = self.serviceEndPoint("database")
id = service.execute("show tables")
self.processResponse(self.queryResponse,id)
self.processFailure(self,queryFailure,id)
self._request[id] = self.conversationId()
self.suspendResponse(self.tablesResult)

def tablesResult(self):
request = self.conversationId()
result = self._result[request]
del self._result[request]
return result

def queryResponse(self,id,result):
if self._request.has_key(id):

request = self._request[id]
self._result[request] = result
del self._request[id]
self.resumeResponse(request)

def queryFailure(self,id,error,description,origin,details):
if self._request.has_key(id):

request = self._request[id]
del self._request[id]
self.cancelResponse(request,error,description,origin,failure)

As can be seen, it will be necessary to save away state information about a suspended request so it can
be later resumed. In this example the conversation id of the original request is associated with the con-
versation id of the downstream request. When the result of the downstream request is received, it can
be saved away and the original request resumed with the cached result being returned. In the event that
the downstream request fails, the "cancelResponse()" method is used to abort the original re-
quest.

As with the "abortResponse()" member function, if "suspendResponse()" is being called
from within a method, it will be necessary for any code to be explicit about what exceptions it catches,
or to at least catch the DelayedResponse exception and pass it on as is.
67

Service Requests
Note that "suspendResponse()" and "resumeResponse()" were only added in OSE 7.0pl5
and are a layer on top of the "delayResponse()" method which only performed the single opera-
tion of raising the exception of type DelayedResponse. The newer functions should make the task
of implementing a delayed responese easier, so if you are using "delayResponse()" you should
change your code to use the newer functions.

Identity of the Sender

Normally it is not necessary to know the identity of the sender of a request. If a means of identifying
who has initiated the request is required however, the details of the current request can be queried to
obtain the address of the sender. This can be useful where a separate session object in the form of a
new service is created to manage interaction with a particular client. To obtain the request object for
the current request the "currentRequest()" member function is used.

By calling the "sender()" member function of a request object, the service address of the service
agent initiating the request can be obtained. Having created a separate session for that client, all re-
quests for that session can be authenticated as being from the same service agent. Such a scheme may
even have as a prelude a log in mechanism to ensure that a service agent making the request has suffi-
cient privileges to initiate a separate session.

Whether or not a login and password is required, the idea is that the method used to initiate the session
returns the name of the service created to manage the session. Such a session object should monitor
the existence of the service agent who initiated the session such that the session can be destroyed au-
tomatically when the owner is withdrawn.

class Session(netsvc.Service):
def __init__(self,name,client):

netsvc.Service.__init__(self,name)
self._client = client
self.subscribeServiceAddress(self.announce,client)
self.exportMethod(self.close)

def announce(self,binding,status):
if status = netsvc.SERVICE_WITHDRAWN:

self.destroyReferences()
def close(self):

client = self.currentRequest().sender()
if client != self._client:

self.abortResponse(1,"Not Owner of Session")
self.destroyReferences()

class Service(netsvc.Service):
def __init__(self,name="service"):

netsvc.Service.__init__(self,name)
self._count = 0
self.exportMethod(self.login)

def login(self,login,passwd):
authorise login/passwd
68

Invalid Request Method
client = self.currentRequest().sender()
self._count = self._count + 1
name "%s/%d" % (self.serviceName(),self._count)
session = Session(name,client)
return name

Such a mechanism as described can’t be used if such a request to create a session may originate over
an RPC over HTTP connection. This is because the service agent which acts as proxy for the request
is transient and will be destroyed once the request has completed. Further, the service agent which acts
as proxy isn’t visible outside of its own process.

The alternative to binding the session to a particular service agent is to create a pseudo unique name
for the service managing the session. To ensure that the session object is destroyed, a timer could be
used to trigger the destruction of the service after a certain period of inactivity. Each request made
against the service would reset the timer giving it a new lease on life. The timeout may be something
which is fixed or which could be defined as one of the arguments supplied in the request to create the
session.

Invalid Request Method

When a service request arrives with a method name which the service doesn’t provide, the member
function "invalidMethod()" is called. By default this method will generate a failure response
with origin of "netsvc" and error code of "SERVER_METHOD_UNAVAILABLE". This member
function might be overridden if the ability to dump out information about requests against invalid
methods was wanted. Any derived implementation of this member function should still call the base
class version to generate the appropriate failure response indicating a method was unavailable.

class Service(netsvc.Service):
...
def invalidMethod(self,methodName,params):

print methodName,params
netsvc.service.invalidMethod(methodName,params)

Local Service Requests

Use of the interface described so far for initiating a service request is the preferred interface. This is
because it will not matter if the service to which the request is being sent is in the same process or an-
other process. It also will not matter if the service is written in the same language or a different lan-
guage. However, when the service is in the same process and is also written in Python a short cut is
available. This will avoid the complexity of using delayed responses, but does mandate that the service
being called always be in the same process.

Access to this short cut is through the Python class LocalService. An instance of the class is cre-
ated with the name of the service against which the call is to be made. A call is then made against the
object as if it were the actual service. This is the same as when a service endpoint object is used except
69

Service Requests
that the result is returned immediately. Note that since the response is immediate, you can’t call a meth-
od which itself would try and use a delayed response.

class DatabaseProxy(netsvc.Service):
def __init__(self,name="database-proxy")

netsvc.Service.__init__(self,name):
self.exportMethod(self.tables)
self._active = {}

def tables(self):
service = netsvc.LocalService("database")
return service.execute("show tables")

As with a service endpoint object, if there is more than one service agent with the same name, the first
one found will be used. The only restriction is that candidate service agents will only come from the
set of service agents in the same process which are also implemented in Python. If a request is made
against an instance of LocalService and no service agent could be found, an exception of type
ServiceUnavailable will be raised. To avoid this, you can also perform a truth test against the
object.

Although the request is channelled through directly to the service instance, it is still not possible to call
methods of the service which haven’t been exported. When this occurs, an exception of type Serv-
iceFailure is raised where the origin is set to "netsvc" and the error code is set to
"SERVER_METHOD_UNAVAILABLE". Any other errors raised by the method being called are simi-
larly indicated using the ServiceFailure exception. Note that each of the attributes of the failure,
ie., the error code, description, origin and details, are available using member variables and not mem-
ber functions as is the case with a failure response object.

If the member function making the request is servicing a request from another service, it may be ap-
propriate to translate the exceptions into different types of failure responses. As is, the exceptions
would translate into a failure response with the same details. This may be confusing for example if it
were an exception indicating that a method was unavailable. The remote service making the request
would errornously think that it had called an invalid method when it was actually the implementation
of the method which it had called which had done the wrong thing.

Note that the LocalService class is being deprecated and will most likely not be available in a future
version of OSE. You are therefore advised not to write any new code using it and change existing code
to use the full messaging system features.
70

Message Exchange
The features of the service agent framework may be used standalone within a single process or across
a set of connected processes. That is, use of the service agent framework is not dependent on a process
being able to connect to a central message exchange process. When combined with the HTTP servlet
framework and RPC over HTTP interface, a single process may be more than adequate for many ap-
plications, especially simple web based services.

If such a service starts to out grow the bounds of a single process however, the application can easily
be split up across multiple processes or machines. This will enable services to be distributed based on
load or proximity to required resources. Being able to split up the application in this way is also ad-
vantageous in that it becomes easier to introduce into the application distinct components which are
written in C++ as opposed to Python.

Unlike most message oriented middleware packages, there is no dedicated message exchange process.
Instead, the components relating to client and server aspects of the mechanism for implementing a dis-
tributed service agent framework are directly accessible. This means that it is possible to take an ex-
isting application and embed within it a message exchange server endpoint. Growing your application
then becomes a simple matter of creating new processes which incorporate a message exchange client
endpoint and have it connect to your original application.

The major classes in the OSE C++ class library used to provide this functionality are the
OTC_Exchange, OTC_InetClient and OTC_InetListener classes. Note that the Python in-
terface only provides the ability to create connections between processes which make use of the INET
socket protocol. When the C++ interface is used directly, on a UNIX platform there is also the option
of using the UNIX socket protocol.
71

Message Exchange
Exchange Initialisation

To create a message exchange endpoint in a process, the Exchange class is used. When creating an
instance of the Exchange class it is necessary to specify whether it is performing the role of a mes-
sage exchange server or that of a client. A message exchange server is a process which takes on the
role of being a hub for message distribution. That is, a message exchange server is a process which
accepts connections from one or more message exchange clients and distributes messages between the
client processes as appropriate.

Two different approaches can be taken in regard to the message exchange server. The first is that the
message exchange server component can be embedded within an existing application and new clients
attach to that existing application. Alternatively, a separate process can be created which embeds just
the message exchange server component and the existing application, now modelled as a client, along
with any new clients connect to this new process.

In both server configurations, initialisation of the message exchange server endpoint is the same. Sub-
sequent to initialisation, the endpoint is then directed to listen on a specific port for any client connec-
tions.

port = 11111
exchange = netsvc.Exchange(netsvc.EXCHANGE_SERVER)
exchange.listen(port)

In the case of a message exchange client, instead of listening for connections, the endpoint is directed
to connect to a message exchange server.

host = "localhost"
port = 11111
retry = 5
exchange = netsvc.Exchange(netsvc.EXCHANGE_CLIENT)
exchange.connect(host,port,retry)

Because it is possible that the message exchange server is not available, a retry delay can be specified.
When supplied this will result in successive attempts to connect to the server until a connection is es-
tablished. The retry delay when supplied needs to be specified in seconds.

Note that if a connection to the server is lost, the client will also attempt to reconnect automatically
after the retry delay time has expired. This has the affect that a client will always try to stay connected
to its server without you needing to take any specific action. Your process will not be prematurely shut-
down if a connection cannot be established or if a connection is lost.

Service Availability

Unless the service audience of a service agent has been set so as to restrict its visibility, a service will
automatically become visible within connected processes through the service registry of the remote
process. That is, if a particular service is located within the same process as the message exchange serv-
72

Service Availability
er endpoint and a new client connects, a subscriber to that service in the client will be notified that the
service is available. Similarly, any service within a client will become visible from the server as well
as other connected clients.

Although the service is located in a separate process, the same service registry interface is used to sub-
scribe to the presence of the service. Subscription to reports produced by the service and the issuing of
requests against that service are also mediated through the same interface as previously described. The
only exception to this is that the LocalService proxy class cannot be used to communicate with
any service in a remote process, it being restricted to services implemented using Python which appear
in the same process.

Except for the LocalService proxy class, that there is no distinction in the interface to communi-
cate between services whether they be in the same or a remote process, means that it is a simple matter
to split an application across multiple processes. If a distinct message exchange server process is used,
all that is required is that each process embed a message exchange client and connect to the message
exchange server.

As an example, a process supporting a service which publishes periodic reports would be written as
follows.

class Publisher(netsvc.Service):
def __init__(self):

netsvc.Service.__init__("publisher")
self.publishReport("system.ctime",netsvc.DateTime(),-1)
self.startTimer(self.timeout,10,"heartbeat")

def timeout(self,tag):
self.publishReport("system.time",netsvc.DateTime())
self.startTimer(self.timeout,10,"heartbeat")

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)
exchange = netsvc.Exchange(netsvc.EXCHANGE_CLIENT)
exchange.connect("localhost",11111,5)
dispatcher.run()

The process containing the corresponding subscriber to this service would then be written as follows.

class Subscriber(netsvc.Service):
def __init__(self):

netsvc.Service.__init__(self)
self.monitorReports(self.report,"publisher","system.*")

def report(self,service,subject,content):
name = service.serviceName()
identity = service.agentIdentity()
publisher = "(%s/%s)" % (`name`,identity)
if subject == "system.ctime":

now = str(netsvc.DateTime())
print "%s became available at %s" % (publisher,now)
73

Message Exchange
print "%s originally started at %s" % (publisher,str(content))
elif subject == "system.time":

print "%s was still alive at %s" % (publisher,str(content))

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)
exchange = netsvc.Exchange(netsvc.EXCHANGE_CLIENT)
exchange.connect("localhost",11111,5)
dispatcher.run()

The only difference is that a message exchange client has been added to each, the actual services are
identical to what they were when used in the same process.

In regard to announcements of service availability and their subsequent withdrawal, when everything
is in the same process, such an announcements means that the service had been created or destroyed.
In the context of a distributed system, such an announcement means that a service is now visible or is
no longer visible. Such an announcement doesn’t mean that the service was necessarily destroyed as
it could be the case that the message exchange server process was shutdown. Thus the service could
still exist, it just may not be reachable.

Because services may become unavailable, or connections lost and also because connections between
processes will automatically restart when possible, it is important that client services take notice of an-
nouncements regarding the availability of a service it is using. A client service should not assume that
a service it is using will always be available and should be programmed to accommodate this fact.

Connection Announcements

Monitoring the existence of services gives precise information about when such services become avail-
able. This however may be too much fine detail. If a client process needs to merely know when a con-
nection had been established to the message exchange server, it is possible to create a derived version
of the Exchange class and override the "handleConnection()" member function.

This member function will be called when a client has successfully connected to a server, when that
connection is subsequently lost, or when an initial connection attempt fails. On the server side, the
member function is called when a connection is accepted and when it is lost.

class Exchange(netsvc.Exchange):
def __init__(self,type):

netsvc.Exchange.__init__(self,type)
def handleConnection(self,announcement):

state = "INACTIVE"
if announcement.state() == netsvc.CONNECTION_ACTIVE:

state = "ACTIVE"
process = announcement.remoteProcess()
address = announcement.remoteAddress()
message = "%s %s (%s)" % (state,process,address)
logger.notify(netsvc.LOG_NOTICE,message)
74

Authorisation of Clients
Overriding this method can be useful purely for logging purposes, but might also be used in a client
process to trigger an announcement to activate the function of the process upon a connection becoming
active. Consequently, the operation of a client process could be suspended or the process shutdown
when no active connection could be established or the connection lost.

This latter mode of operation would be necessary when a retry delay is not specified when connecting
a message exchange client to a server. In this situation the retry delay defaults to the value of "-1",
indicating that one and only one connection attempt should be made. If this is used, a client should
monitor to see if the connection fails and shutdown the process if it does. Similarly, if it does manage
to connect to the server, when that connection is subsequently lost the process should again be shut-
down.

Note that creation of a one off connection will currently consume resources that cannot be reclaimed.
This is a limitation of the Python interface and is not present when using the OSE C++ class library
directly which has a way of reclaiming the resources. As the intent is that the message exchange frame-
work is for permanent connections, this is not seen as too problematic at this time and will only be ad-
dressed at some time in the future.

Authorisation of Clients

As the message exchange framework provides direct access into an application, it may be desirable to
restrict which hosts can connect in to an application. If this type of control is required, it can be imple-
mented by creating a new derived version of the Exchange class and overriding the member function
"authorise()". For each client connection that a server gets, this member function will be called
with the IP address of the host the client is located on. A server may then reject or accept the connec-
tion.

class Exchange(netsvc.Exchange):
def __init__(self,type,hosts=[]):

netsvc.Exchange.__init__(self,type)
self._allow = hosts

def authorise(self,host):
return host in self._allow

To accept a connection the member function should return a true value and false otherwise. When a
connection is rejected, the client will see it as a failed connection attempt.

Distributed Exchange Server

When an application is distributed across multiple machines, it may not be desirable that processes on
one machine must connect to the message exchange server located on another machine. The problem
here is that if the machine hosting the message exchange server is shutdown, none of the processes lo-
cated on remote machines will be able to communicate with each other. In essence there is a single
point of failure.
75

Message Exchange
When an application is distributed across multiple machines, it is often the case that even if one ma-
chine were to be shutdown, the processes on a different machine might be able to quite happily keep
operating so long as they could still communicate. To support this, a means of setting up a distributed
version of the message exchange server is provided.

In this arrangement, each machine has its own message exchange server, with each message exchange
server connected to all others. If a machine is now shutdown or connections to one machine lost, other
machines will still be able to communicate with processes on any machines which are still accessible.
That is, loss of the message exchange server on one machine will only directly impact that machine.

To setup a distributed exchange server, the message exchange server endpoint is created as before. The
difference is that as well as listening on a port for new connections, client like connections are created
to the other message exchange servers. The aim here is to effectively create a star connected network
between the message exchange servers. That is, each message exchange server has a connection to all
other message exchange servers.

port = 11111
exchange = Exchange(netsvc.EXCHANGE_SERVER)
exchange.listen(port)

delay = 5
for host in hosts:

exchange.connect(host,port,delay)

Note that since connections are bidirectional, it is not necessary for each message exchange server to
mutually connect to each other. That is, if you have two message exchange servers, it is only necessary
for one to connect to the other. In other words, the list of remote hosts in one would be empty, where
as the list of the remote hosts in the other would be the reciprocal host. If two message exchange serv-
ers do connect to each other, this will be detected and one connection will be ignored, however it
should be avoided.

Multiple Exchange Groups

When creating a service agent, the default service audience is "*", indicating that knowledge of the
service should be distributed as widely as possible. One alternative is to set the service audience to the
empty string, which will always result in the service only being visible within its own process. What
occurs for other values of the service audience property depends on the exchange group assigned to a
message exchange endpoint.

By default, the exchange group of a message exchange endpoint is empty, but may be set by an option-
al argument when initialising the class. A message exchange endpoint is only able to be connected to
a complimentary message exchange endpoint which is a member of the same group. That is, a message
exchange client endpoint can only connect to a message exchange server endpoint with the same ex-
change group.
76

Multiple Exchange Groups
With respect to service visibility, a message exchange endpoint will only pass information about serv-
ices if the service audience is "*", or if the service audience is the same as the exchange group. The
only exception to this is when the exchange group is empty. In that case, an empty service audience
will still restrict visibility of a service to its own process.

By using multiple exchange groups within an application, it becomes possible to segment an applica-
tion into parts and restrict visibility of services to those parts of the applications which need to see
them. As an example, a service may act as a front end for multiple back end services which do the real
work and for which it is not necessary that they be visible.

In this example, the process containing the front end service, as well as creating a message exchange
client endpoint for the default exchange group, would create its own message exchange server end-
point. The default name for this exchange group would be overridden and a different port used for con-
nections. Back end processes would then connect to this new port, with all services in the back end
processes having a service audience matching that of the new exchange group.

class FrontEnd(netsvc.Service):
def __init__(self,name="database")

netsvc.Service.__init__(self,name)
self.subscribeServiceGroup(self.announce,"backend")

def announce(self,binding,group,status):
if binding.serviceAudience() == "database":

this is one of ours

default = netsvc.Exchange(netsvc.EXCHANGE_CLIENT)
default.connect("localhost",11111,5)
backend = netsvc.Exchange(netsvc.EXCHANGE_SERVER,"database")
backend.listen(11112)

The front end service would use subscription to a service group to know about the existence of any
back end services. Each of the back end services would in turn add themselves to the same group so
the front end is aware of their existence. The front end service can check the service audience for a
service to know for sure that it is one of its back end services and not an imposter visible through the
default exchange group.

class BackEnd(netsvc.Service):
def __init__(self,name="",audience="database")

netsvc.Service.__init__(self,name,audience)
self.joinGroup("backend")

backend = netsvc.Exchange(netsvc.EXCHANGE_CLIENT,"database")
backend.connect("localhost",11112,5)

Having done this, any services within the back end process will only be visible from other back end
processes and the front end process. The services in the back end process will not be visible within any
process reachable from the front end process over the original message exchange client endpoint at-
77

Message Exchange
tached to the default exchange group. Back end services will still be able to see any services on the
default exchange group which had a service audience of "*".

Note that different exchange groups should not overlap. That is, they should only ever share at most
one process with any other exchange group. In effect, exchange groups when used should form a hier-
archy. The only time that loops are allowed within the way processes are connected is when creating
a distributed exchange server for a specific exchange group.

Scalability of the Framework

Because there is no dedicated message exchange server process serving as the sole repository of serv-
ice information, the service registry in each process will contain a record of all services it can see. As
the size of an application grows to have very large number of services this may result in the size of
what otherwise should be a small process to grow unnecessarily.

Currently there are couple of approaches that can be taken to reduce this problem, however, it is rec-
ommended that if you know that you will have very large numbers of services and specifically pub-
lishers and subscribers, that you might be better off purchasing one of the commercial products which
are specifically designed and targeted at such large scale systems. Such products might not support the
concept of distinct services and instead implement a flat name space for subscriptions, but they are
more likely to scale better.

In other words, the design of the service agent framework and the message exchange framework lends
itself to small to medium size systems. Don’t expect to be able to run the whole of the New York stock
market data feeds through this system as it will more than likely not suit your requirements.

Having made this disclaimer, the first things you can do to reduce growth in the size of the service reg-
istry in each process, is to not export a service beyond the scope of a process unless you really need to.
That is, if the service only needs to be visible within its own process, sets its service audience to be the
empty string.

Such a service will not be visible outside of the process and that service will not be able to subscribe
to services outside of the process, but in most cases the service will still be able to make a request
against a remote service. Restricting the visibility of a service to its own process will also cut down on
traffic between processes relating to the existence and withdrawal of services.

The next thing which can be done is to look more closely at the relationship that exists between serv-
ices. If there are a group of related services which only need to talk to each, locate them together. This
can be done by putting them in the same process and restricting visibility to that process, or by sepa-
rating them from the remainder of the application by creating a distinct exchange group. In both cases,
have only the services which need to be public actually visible globally.
78

Message Encoding
As the service agent framework is designed as a distributed system covering multiple programming
languages, it is necessary that any data being passed around within a report, request or response be se-
rialised into a form suitable for transmission as part of a message. At present the encoded form of the
data uses a subset of XML. That is, it would qualify as being XML, however to make the implemen-
tation easier, the code for decoding such messages will not accept arbitrary XML.

At present the exact form of the XML being used is not revealed as this is being reviewed and will most
likely change. Further, the protocol used between message exchange endpoints is unique to this soft-
ware. It too is being reviewed and will most likely be changed to use some more commonly accept
form of handling message boundaries. Any new mechanism will likely also be designed to be able to
proxy through HTTP servers, thus avoiding issues with closed firewalls.

That the precise details are not being revealed actually makes no difference as it has no bearing in re-
lation to using the software. This is because everything is hidden under a high level API which hides
such details, thus allowing for change in the formats used without requiring changes to applications
using the software. The only instance where changes might have a visible affect is in respect to the
NET-RPC protocol for RPC over HTTP. This would only be an issue if you tried to write your own
client for this protocol.

The one aspect of how data is encoded which will not change is in relation to the means of identifying
different types. Here the XML Schema Datatypes 2001 specification is used as a guide, with Python
types being assigned corresponding types with respect to this specification. Through introduction of
customised encoders and decoders, support for user defined scalar data types may however also be
added.
79

Message Encoding
Supported Data Types

Communication between services is mediated through a layer of code which is written in C++. The
only exception to this is when the LocalService class is used as a proxy to send a request to a serv-
ice in the same process which is also implemented in Python. This means that except for when the Lo-
calService class is being used, any data which is being transferred between services must go
through a process of being encoded into a serialised form at the point of sending and then deserialised
at the point of reception.

Data which is being sent between services is not limited to that of just a string. The data to be sent can
consist of any of the basic Python scalar types, a list, a tuple or a dictionary. In addition to this, the
Python None value may be used, as well as a number of extended types. The only limitation in respect
of the Python compound types is that when using a dictionary, the keys must be of type string. Further,
when a tuple appears within any data, the recipient will see it as a list and not a tuple. It is not possible
to send data which is cyclically self referential.

self.publishReport("string","value")
self.publishReport("list",[1,1L,1.1,None])
self.publishReport("dictionary",{"key":"value"})

The extended types which are supported are Boolean, Binary, Date, DateTime, Time and Du-
ration. For the Boolean type, there are also predefined values for True and False. The
Boolean type should behave correctly with respect to all truth type tests. If the default arguments for
the constructor of Date andDateTime types are used, they will be initialised to the current local date
and current local date and time respectively.

self.publishReport("true",netsvc.True)
self.publishReport("false,netsvc.False)
self.publishReport("boolean",netsvc.Boolean(1))

self.publishReport("binary",netsvc.Binary("value"))

current local date
self.publishReport("date",netsvc.Date())

current local date/time
self.publishReport("dateTime",netsvc.DateTime())

When using the various date and time types, they should be initialised with string values corresponding
to what type they represent. The format and range of these values should be the subset of values pos-
sible under the ISO 8601 date/time standard as described by the XML Schema Datatypes 2001 speci-
fication, examples of which are illustrated below.

Type Format Sample

Date YYYY-MM-DD 2001-12-25
80

Mapping of Scalar Types
For the date and time types, the current Python implementation does not do any checking to determine
if the supplied values are valid, but will pass them as is. Note that the XML Schema Datatypes speci-
fication does allow for a timezone in a date and time, but it is recommended that all date and time val-
ues be sent as UTC. In the C++ library, only classes corresponding to Date and DateTime exist.
These are OTC_Date and OTC_Time. The OTC_Time class is not able to handle timezones.

The only difference between the Binary type and using a string is that the value supplied via the Bi-
nary type, will be encoded internally using "base64" encoding when being passed around. This has
relevance because in XML most control characters are not permitted in string values. An XML imple-
mentation can also collapse a "\r\n" combination to just "\n". If such characters may appear in a
string, you should use the Binary type to ensure that they are preserved as is. Note that you do not
however have to encode the string using base64 encoding first as the internal implementation will do
this for you automatically.

Mapping of Scalar Types

When data is being serialised, the names attributed to scalar types derive from the XML Schema Da-
tatypes 2001 specification. The only exception to this is the None type, which notionally is passed
around internally with an empty type value. The mapping from Python types to those described in the
XML Schema Datatypes specification is as follows.

DateTime YYYY-MM-DDThh:mm:ss 2001-12-25T23:59:59

Time hh:mm:ss 23:59:59

Duration PnDTnHnMnS P1DT23H59M59S

Python Type Encodes To XML Type

string xsd:string

int xsd:int

long xsd:long

float xsd:double

netsvc.Boolean xsd:boolean

netsvc.Binary xsd:base64Binary

netsvc.Date xsd:date

netsvc.DateTime xsd:dateTime

Type Format Sample
81

Message Encoding
If a service is implemented using the OSE C++ class library directly, different size versions of the in-
teger and floating point types are available and can be generated in the serialised form of any data. A
consequence of this is that when converting any data from its serialised form into instances of Python
types, a broader range of possible values types need to be accommodated.

Note that at the present time, not all of the XML data types in respect of non positive and non negative
integers are accommodated. These will most likely be added at some time in the future, however in the
short term they don’t add anything extra in relation to the Python interface. Support for the type

netsvc.Time xsd:time

netsvc.Duration xsd:duration

XML Type Decodes to Python Type

xsd:string string

xsd:byte
xsd:short
xsd:int
xsd:unsignedByte
xsd:unsignedShort
xsd:unsignedInt

int

xsd:long
xsd:unsignedLong
xsd:integer,

int or long as appropri-
ate

xsd:float
xsd:double
xsd:real

float

xsd:boolean netsvc.Boolean

xsd:base64Binary netsvc.Binary

xsd:date netsvc.Date

xsd:dateTime netsvc.DateTime

xsd:time netsvc.Time

xsd:duration netsvc.Duration

Python Type Encodes To XML Type
82

User Defined Types
"xsd:hexBinary" will also be added at some point in the future as well. If you wish to send a Uni-
code string, you should convert it into a string using UTF-8 encoding.

User Defined Types

The intent with the XML Schema Datatypes specification is that additional scalar data types can be
introduced by assigning a new name scoped within a distinct namespace. In respect of the types defined
by this specification, the namespace "xsd" is used. Note that within this implementation, the name-
space is not linked to a URI containing any form of definition for that type. If sending a data value of
your own type, it is up to your code to ensure that both ends know what the type means.

The simplest way of adding your own types is by using the Opaque class. When initialised this takes
two values, a string identifying the type of value and a string representing the value in its encoded form.
It is not necessary to escape any characters in the encoded value which may be special to XML as such
values will be automatically escaped as necessary.

data = complex(1,1)
type = "python:complex"
self.publishReport("complex",netsvc.Opaque(type,data))

In reality, it isn’t actually necessary to encode a Python complex value in the way shown as a special
mapping is by default installed for this type. For this Python type the namespace "python" is used.
If defining your own type it is recommended you use some other namespace value which is in some
way specifically associated with your application or some third party standard relating to additional
XML types.

As a special mapping is provided for the Python complex type, it will be decoded into an instance of
the Python complex type on reception. If however a mapping is not available for a specified type, the
value will be converted back into an instance of the Opaque type. The type associated with the value
can then be queried using the "type" attribute and the actual encoded data using the "data" attribute.

def dump(self,object):
if isinstance(object,netsvc.Opaque):

print object.type,object.data

The Opaque class provides a means of sending a value without a defined mapping, or of you being
able to receive values for which no mapping is defined. If necessary the interface of the Opaque class
can be used to dynamically handle such unknown values and perhaps still make some sense of them.

Adding New Mappings

Mappings for new types can be added at two levels. These are at global scope or such that they only
apply within the scope of a single service. If a type mapping is added at global scope, you should realise
that such a mapping will be applied to any service. Adding new mappings with global scope should
therefore be carefully considered as it may inadvertently affect the operation of another service.
83

Message Encoding
To add a new mapping at global scope the functions "encoder()" and "decoder()" should be
used to register functions to do the appropriate conversions. When registering the encoder, the first ar-
gument should be either the type object or class object as appropriate. When registering the decoder,
the first argument should be the qualified name you have given the type.

The encoder function which you register should accept a single argument, that being an instance of
your type. The function should return a tuple containing the qualified name you have given the type
and the value encoded as a string. The decoder function should accept two arguments, they being the
qualified name you have given the type and the value encoded as a string. The function should return
the corresponding instance of the type as described by the encoded value. If the encoded value is
invalid, the function should raise an appropriate exception.

def _encode_Complex(object):
return ("python:complex",repr(object))

def _decode_Complex(name,string):
object = eval(string,{},{})
if type(object) != types.ComplexType:

raise TypeError("invalid encoding for complex type")
return object

netsvc.encoder(types.ComplexType,_encode_Complex)
netsvc.decoder("python:complex",_decode_Complex)

To define a mapping which applies only within the context of a single service, you need to override
the member functions "encodeObject()" and "decodeValue()" as appropriate. Note that the
default implementations of these methods will apply any global mappings which are present. If your
version of these functions, don’t identify the type you are interested in, your function should call the
base class version of the function. The arguments to these functions are similar to the global encoders
and decoders.

class Database(netsvc.Service):
def __init__(self,name,**kw):

netsvc.Service.__init__(self,name)
...

def encodeObject(self,object):
if hasattr(MySQLdb,"DateTime"):

if type(object) == MySQLdb.DateTimeType:
return ("xsd:string",object.strftime())

elif type(object) == MySQLdb.DateTimeDeltaType:
return ("xsd:string",str(object))

return netsvc.Service.encodeObject(self,object)

Providing a mapping which is specific to a service is most often used when the service interacts with
a Python module which defines its own types for such values as date and time. In this circumstance,
the mapping function can automatically translate an instance of the type into a type appropriate for the
encoded data. This avoids your own code having to manually translate values into corresponding val-
84

Handling Structured Types
ues of the correct type before hand. A service may also override the default decoders for extended types
such as the date and time types if desired.

Handling Structured Types

The encoding mechanism for data does not provide a way of adding support for your own structured
types, whereby the type of that object can also be transmitted. All objects need to be able to be con-
verted into instances of scalar types, dictionaries, tuples or lists. To avoid having to do this conversion
manually, it is however possible to define an encoder for a structured type which will do this for you.

At the global level, such a function is again registered using the "encoder()" function. The differ-
ence between this function and that for scalar types however, is that instead of returning a string giving
the name of the scalar type, the value None should be returned in its place. The second value in the
tuple should then be the instance of the structured type translated into either a scalar type, dictionary,
tuple or list.

def _encode_UserList(object):
return (None,list(object))

netsvc.encoder(UserList.UserList,_encode_UserList)

Having returned the translated value, it will be represented to the encoder. Thus it is only necessary to
translate the top level of the data structure as enclosed values will in turn be translated automatically
if required and if an encoder is registered. This mechanism may also be used in an encoder specific to
a service.
85

Message Encoding
86

Servlet Framework
The HTTP servlet framework can be used to provide a window into your application. A number of pre-
defined servlets are provided or you can create your own. You can also create your own server objects
to map the servlets to appropriate parts of the URL namespace. Alternatively, a number of predefined
server objects can be used for common tasks such as serving up files from the filesystem, or provision
of RPC over HTTP services. Basic user authentication is implemented and clients can also be blocked
based on their address.

The major classes in the OSE C++ class library involved in providing this functionality are the
OTC_HttpDaemon, OTC_HttpServer and OTC_HttpServlet classes, plus the various de-
rived servlet and server classes. The implementation of the HTTP servlet framework is based on the
event system and multiple HTTP requests can be handled concurrently.

Although the framework is quite powerful, you should still keep in mind that its main purpose is for
interacting with an application. If you are after a general purpose web server, you would probably be
better off using a product like Apache. If you need the appearance that the web site and application are
one, use the "mod_proxy" plugin for Apache to redirect only a portion of the URL namespace. This
actually has the added benefit that Apache can be used to setup a SSL connection with the client over
any insecure network, with communication between Apache and the application on the secure network
being normal HTTP.

Framework Overview

When a HTTP client makes a connection to the server process, a session manager is created to parse
any requests made by that client. For each request, an attempt is made to find a server object which
manages the part of the URL namespace that the request falls under. This server object is then asked
87

Servlet Framework
to provide a servlet to handle the actual request. If no server object is found corresponding to that por-
tion of the URL namespace, or the server object is not able to provide a servlet to handle the request,
a HTTP error response is returned to the client indicating that the resource corresponding to the sup-
plied URL could not be found.

Where an appropriate servlet to handle the request is found, the session manager will initially pass off
to the servlet the details of the request. This will include the type of request, the URL and the contents
of any HTTP headers. The details initially provided to the servlet do not include any content associated
with the request. Any content associated with a request will subsequently be passed to the servlet as it
arrives. This will only occur though if the servlet wasn’t able to process the request based on the initial
information and does actually require the content.

In the majority of cases a request will not have any associated content and a servlet will be able to proc-
ess the request straight away. Even if there is no content however, the servlet isn’t obligated to send a
response immediately. This may be the situation if the servlet needs to wait until information from an-
other source arrives before it can form the response. In this scenario, the servlet might send a request
using the messaging framework to a remote service to obtain the information. When the response from
the remote service arrives, the servlet can then generate the response.

When the action of the servlet does depend on the content supplied with the request, the servlet would
accumulate the content as it arrives until the amount of content matches that given in the content length
header, or until some appropriate boundary is encountered. Now having all the content associated with
the request, the servlet can process the request and send a response. Alternatively it could again delay
the response if it needs to first send the content received to some remote service and wait for some re-
sponse.

When a servlet sends a response to the HTTP client, as long as the servlet generates a content length
in the HTTP headers, any request by a HTTP client to keep alive the session will be honoured. This
allows the HTTP client to submit additional requests using the same connection if desired. In general
the servlet framework adheres to the HTTP 1.0 protocol.

The HTTP Daemon

The Python class which listens for connection requests from HTTP clients is called HttpDaemon.
When creating the HTTP daemon, you need to tell it which port to listen on and also register with it
any HTTP server objects. When registering a HTTP server object, you need to identify which part of
the URL namespace it manages. Finally, you need to start the daemon so that once the dispatcher is
run it will actually listen and handle the requests.

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)

daemon = netsvc.HttpDaemon(8000)
filesrvr = netsvc.FileServer(os.getcwd())
daemon.attach("/",filesrvr)
88

The File Server
daemon.start()

dispatcher.run()

When a HTTP server object is registered, the first argument to the "attach()" member function
should be the path under which resources made available by the HTTP server object are accessible.
Except for the root directory, the path should not include a trailing "/". The path should also be in nor-
malised form. That is, it should not include consecutive instances of "/" within the path, or include the
path components ".." or ".".

If the path isn’t normalised in this respect, these paths will never match against any request as request
URLs will always be normalised before attempting a match. The request URL is always normalised to
avoid the possibility of malicious requests trying to access file type resources outside the available di-
rectory tree.

If desired, a single HTTP server object may be registered multiple times within the one URL name-
space. Registrations may also be done hierachically. That is, one registration may nest within the URL
namespace of another. In this situation a request will match against the HTTP server object with the
most deeply nested path.

filesrvr1 = netsvc.FileServer(os.path.join(os.getcwd(),"info"))
filesrvr2 = netsvc.FileServer(os.path.join(os.getcwd(),"logs"))
daemon.attach("/",filesrvr1)
daemon.attach("/logs",filesrvr2)

Normally the port which the HTTP daemon is to listen on will be fixed. If you require a dynamically
allocated port, you should use "0" as the port number. The actual port number which is allocated can
then be queried using the "port()" member function. Obviously, this port number would then need
to be displayed somewhere or otherwise accessible so it is known which port to connect to.

daemon = netsvc.HttpDaemon(0)
port = daemon.port()

The File Server

The FileServer class is a predefined HTTP server object for serving up files from the file system
in response to HTTP GET requests. This server object is suitable for providing access to documenta-
tion related to an application, configuration files or application log files. A plugin mechanism for han-
dling special file types is also included

In the case of files resident in the file system, the server is able to handle any size file, with the corre-
sponding servlet only sending data back to the HTTP client as it is able to receive it. That is, transmis-
sion of a large file will not blow out the size of the application nor will it cause the application to block
if the client is slow at reading the contents of the file.
89

Servlet Framework
When an instance of the FileServer class is created, it must be supplied with the filesystem direc-
tory from which files are to be served. The server object utilises the Python mimetypes module for
determining file types. The file type associated with an extension can be overridden, or knowledge of
additional file types can be added using the "map()" member function.

filesrvr = netsvc.FileServer("/home/httpd")
filesrvr.map(".py","text/plain")

Note that it is expected that the HTTP client knows the name of the file it is trying to access as there
is no builtin support included for directory browsing. It is however possible to define the names of one
or more index files to try when a request identifies a directory as opposed to a file. When more than
one index file is specified, those which were declared later, take precedence.

filesrvr.index("index.htm")
filesrvr.index("index.html")

Editor backup files, temporary files generated by an application, or any other files which should not in
any way be accessible from a HTTP client, can be hidden from view so long as they have a distinct
extension.

filesrvr.hide(".bak")
filesrvr.hide(".html~")

When it comes to the actual task of serving up a single file from the file system, the FileServlet
class is used. This is a wrapper around the corresponding servlet class from the OSE C++ class library
used to handle the request for a single file. The servlet may be used directly from a custom HTTP serv-
er object.

Client Authorisation

If the HTTP servlet framework is being used to provide an administrative interface into an application,
it may be desirable to block access from all but a few selected client hosts. This can be useful where
the application is otherwise intentionally accessible over the Internet, or may inadvertantly become ac-
cessible from a broader range of hosts than intended. This may result from misconfigured firewalls, or
the addition of additional subnets to a corporate network.

If you wish to control who can access the application through the port monitored by the HTTP daemon,
it is necessary to create a derived version of the HttpDaemon class and override the "author-
ise()" member function. For each client connection, this member function will be called with the IP
address of the client host. Your code can thereby block requests from any undesirable hosts.

class HttpDaemon(netsvc.HttpDaemon):
def __init__(self,port,hosts=[]):

netsvc.HttpDaemon.__init__(self,port)
self._allow = hosts

def authorise(self,host):
return host in self._allow
90

User Authorisation
If access to a particular client is disallowed, the connection will be dropped immediately. The client
will not receive any form of specific HTTP error response indicating why the connection has been
closed. Note that this mechanism blocks a client from accessing any part of the URL namespace for
that HTTP daemon. If you wish to only block client access to specific resources, you would need to
customise each HTTP server object or servlet, or use multiple HTTP daemon objects on separate ports.

User Authorisation

A further level of authorisation beyond that of blocking specific client hosts is to individually authen-
ticate each user. The mechanism for user authentication is performed against the HTTP server objects.
That is, the URL namespace managed by each HTTP server component can be individually protected
using different user databases.

To add user authentication to a particular HTTP server object, you should derive from the class and
override the "authorise()" member function. If building your own HTTP server object, you could
embed the member function directly in your class.

class FileServer(netsvc.FileServer):
def __init__(self,directory,users={}):

netsvc.FileServer.__init__(self,directory)
self._allow = users

def authorise(self,login,password):
return self._allow.has_key(login) and \

self._allow[login] == password

If you need to control user access at the level of individual URLs within the URL namespace managed
by a particular HTTP server object, that functionality would need to be embedded into any servlets cre-
ated by that HTTP server object, or managed at the point that the servlets are created by the HTTP serv-
er object. Note that only the HTTP basic authentication mechanism is supported. There is no support
for use of secure sockets and SSL.

HTTP Server Objects

When a HTTP request is received, it is a HTTP server object which will dictate the type of HTTP serv-
let created to handle the request. If you wish to implement a customised mapping between request
URLs and the available HTTP servlets, or introduce a new type of HTTP servlet, you will need to de-
fine your own HTTP server object by deriving from the HttpServer class and overriding the
"servlet()" member function.

class HttpServer(netsvc.HttpServer):
def servlet(self,session):

servletPath = session.servletPath()
if servletPath == "echo":

return netsvc.EchoServlet(session)
elif servletPath == "motd":

return netsvc.FileServlet(session,"/etc/motd","text/plain")
91

Servlet Framework
return netsvc.ErrorServlet(404)

daemon = netsvc.HttpDaemon(8000)
server = HttpServer()
daemon.attach("/test",server)
daemon.start()

The job of the "servlet()" member function is to create an instance of a HTTP servlet capable of
handling a request made against a specific URL. When the "servlet()" member function is called
it is supplied with the HTTP session object. The session object provides access to details of the request,
including the server root and servlet path. The server root corresponds to the path under which the
HTTP server object was registered. The servlet path is the remainder of the path expressed relative to
that server root.

As an example, if the request used the path "/test/echo" and the HTTP server object was regis-
tered with the path "/test", the server root would be "/test" and the servlet path would be "echo".
In the case that a HTTP server object is registered with path "/", the server root will still be "/". This
is the only case where the trailing "/" isn’t removed.

Under normal circumstances the HTTP server object would determine the type of HTTP servlet to cre-
ate and the resource being referenced based only on the servlet path. If necessary however, it can query
other information related to a request. Such a circumstance might be to look for the presence of cookies
used to implement a user session mechanism.

When a HTTP servlet is created, it will need to be passed the handle to the HTTP session object. All
the predefined HTTP servlets accept this as the first argument when the servlet is created. If you are
defining your own servlets, it is recommended you follow this convention.

If the HTTP server object isn’t able to map a request to a particular type of HTTP servlet, the "serv-
let()" member function should return "None", or should indicate a specific type of HTTP error re-
sponse using the ErrorServlet class. A HTTP client can be redirected to a different resource using
the RedirectServlet class.

The Error Servlet

The error servlet as implemented by the ErrorServlet class is provided as a quick way for a cus-
tom HTTP server object to return a HTTP error response. In addition to the the HTTP session object,
the error servlet needs to be supplied with an approriate HTTP error response code. Text to be included
in the body of the response can also be provided if desired. Such text may include any relevant HTML
markup, but should not include the opening and closing "body" tags.

class HttpServer(netsvc.HttpServer):
def servlet(self,session):

return netsvc.ErrorServlet(session,501,"Not implemented.")
92

The Redirect Servlet
The Redirect Servlet

The redirect servlet as implemented by the RedirectServlet class would be used when it is nec-
essary to redirect a HTTP client to an alternate resource. In addition to the HTTP session object, it
should be supplied the URI of the resource to which the HTTP client is to be directed. By default, the
HTTP response code will be "302", indicating the resource has been temporarily moved. This can be
explicitly indicated by using the value "REDIRECT_TEMPORARY". If the resource has been perma-
nently moved, the value "REDIRECT_PERMANENT" can instead be used.

class HttpServer(netsvc.HttpServer):
def servlet(self,session):

url = "http://hostname/" + session.servletPath()
type = netsvc.REDIRECT_PERMANENT
return netsvc.RedirectServlet(session,url,type)

If the URI doesn’t start with "/", it is assumed to be a valid URI and will be passed as is. If the URI
starts with "/", it will assumed to be a absolute URL against the current server host and will be auto-
matically adjusted to include the details of the server host in the URL.

The Echo Servlet

The echo servlet as implemented by the EchoServlet class is useful for debugging. When used to
service a HTTP request, it will generate a HTML document which provides details about the request.

class HttpServer(netsvc.HttpServer):
def servlet(self,session):

return netsvc.EchoServlet(session)

The File Servlet

The file servlet as implemented by the FileServlet class, is used to deliver up to a HTTP client
the contents of a file stored in the operating system’s filesystem. This is the same servlet which is used
internal to the FileServer class. When this servlet is being created it needs to be supplied with the
name of the file and the file type. The latter corresponds to the MIME content type included in the
HTTP response.

If the path supplied to the FileServlet class actually describes a directory, the servlet will generate
a response indicating that access is forbidden. If you wish to implement directory browsing you will
need to implement a separate HTTP servlet to generate an appropriate response and map the request
to it. If you want to redirect the request to an index file, your HTTP server should determine if such an
index file exists and if it does, create the file servlet against it instead.

When the FileServlet class is used, any size file can be handled without the size of the application
growing in size and without the application blocking as a result of a slow HTTP client. This is achieved
as a result of the file being sent in blocks, with the servlet waiting if the connection to the HTTP client
93

Servlet Framework
becomes congested. Although the servlet may be forced to wait before it can send more data, any other
jobs in the event system will still be serviced, including other HTTP requests.

Logging of Requests

By default no information is logged about requests. If you wish to log what requests are being made
against your application using the HTTP servlet framework, you need to set the environment variable
"OTCLIB_HTTPLOGCHANNEL" to the name of the log channel to record the information on. The en-
vironment variable needs to be set prior to the first request being received by the application through
any instance of the HttpDaemon class.

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)

netsvc.mergeEnviron("OTCLIB_HTTPLOGCHANNEL","")

daemon = netsvc.HttpDaemon(8000)
filesrvr = netsvc.FileServer(os.getcwd())
daemon.attach("/",filesrvr)
daemon.start()

dispatcher.run()

The format of the logged messages is the same as Apache web server common log file format except
that no matter what version of HTTP is used, the url component of the request is always expanded to
its complete form. That is, it will be prefixed with "http://hostname:port" as appropriate. Nor-
mally this would only be the case if the request originated with a client supporting HTTP/1.1 protocol
and a full url had been supplied by the client.

If you do not want information about requests appearing in the default log file, but want to split out the
logged messages into a distinct log file, or otherwise treat them in a special way, use a hidden log chan-
nel and create a user defined log channel to capture them.
94

Servlet Objects
To make the most of the HTTP servlet framework it will be necessary to create your own servlets for
interacting with your application. Servlets can be written to handle basic requests against a resource,
or requests where form data is supplied. Special purpose servlets which process arbitrary content as-
sociated with a request may also be created. Having created a servlet, it can be integrated into an ap-
plication by defining a custom HTTP server object, or by storing it as a file and using a plugin, in
association with the file server object.

As the HTTP servlet framework is implemented on top of an event system and doesn’t rely upon
threads, it is necessary to be mindful of how servlets are implemented to avoid a situation where the
code blocks. If the code does block it will effectively stop the whole application. The event system
should therefore be used as appropriate where concurrency is required. If communication with service
objects in a remote process is required to obtain data to satisfy a request, this will be essential.

Processing a Request

In order to implement your own HTTP servlet, you need to create a new class which derives from the
HttpServlet class. If the request your HTTP servlet is to handle does not have any content associ-
ated with it, you will only need to override the "processRequest()" member function.

The "processRequest()" member function will be called immediately after the HTTP server ob-
ject has returned a valid HTTP servlet. If the HTTP servlet doesn’t need to process any content asso-
ciated with a request, it will typically be able to generate a response straight away and the servlet can
then be destroyed.

class HttpServlet(netsvc.HttpServlet):
def processRequest(self):
95

Servlet Objects
if self.requestMethod() != "GET":
self.sendError(400)

else:
self.sendResponse(200)
self.sendHeader("Content-Type","text/plain")
self.endHeaders()
self.sendContent("Hi there.")
self.endContent()

The major member functions of the HTTP servlet class used to interrogate the details of the HTTP re-
quest are "requestMethod()", "requestPath()" and "queryString()". It is these meth-
ods you would use to determine what the HTTP servlet is to do. It may be the case however that it is
only necessary to validate the type of request method. This would occur where the HTTP server object
had already identified a resource against which a request was being made and supplied the handle for
that resource when the HTTP servlet was created.

Having determined the validity or otherwise of a request, the HTTP servlet can do a number of things.
In the event of an error the HTTP servlet can use the "sendError()" member function to generate
an error response. The first argument to "sendError()" should be the appropriate HTTP response
code. An optional second argument may also be supplied consisting of valid HTML text. This text will
be included within the body of the HTML document generated by the "sendError()" member
function.

If the request is valid, the HTTP servlet might instead generate its own response including any appro-
priate content. To start the response the "sendResponse()" member function must be called. The
first argument to "sendResponse()" would typically be be "200", indicating a successful re-
sponse. A HTTP servlet may if it wishes supply any valid HTTP response code here. In fact, the
"sendError()" member function is merely a shorthand method for generating an error response and
underneath actually uses the same functions as described here.

The HTTP servlet may now include any HTTP headers by calling "sendHeader()". The arguments
to "sendHeader()" should be the name of the header and its string value. Whether or not any HTTP
headers are included, the member function "endHeaders()" must now be called.

To include content in a response the "sendContent()" member function is used. This may be
called multiple times. When all content has been sent, the "endContent()" member function should
be called. Calling the "endContent()" member function will have the affect of closing off the re-
sponse and once the "processRequest()" member function returns, the servlet will able to be de-
stroyed.

Persistent Connections

A persistent connection is one whereby the connection to the client can be maintained after a response
has been sent. This allows a HTTP client to submit additional requests without the need to create a new
96

Delaying a Response
connection. Negotiation of persistent connections between the HTTP client and server is managed by
using special HTTP request and response headers.

Where possible the session manager will undertake to maintain persistent connections without you
needing to take any special actions. This is done as a result of the session manager inserting on your
behalf the special headers as appropriate when you call the "endHeaders()" member function.

If the client has requested a persistent connection and supplied a valid content length in the request
headers, and you include a valid content length header in the response headers, the session manager
will aim to maintain the connection. If you do not include a valid content length header in the response
headers, or "sendError()" was used to generate a response, the connection will always be shut-
down.

Note that when a HTTP client does send an additional request over the same connection, it will not be
the same HTTP servlet instance that handles the request. Each request received will always be sepa-
rately parsed, with the appropriate HTTP server object and servlet used each time.

Delaying a Response

The servlet framework is implemented on top of the event system. As a result, it is not mandatory that
a complete response be generated by the "processRequest()" member function. Instead, the
servlet could execute some action which would result in a callback at a later point in time. When that
callback occurs, then it might complete the response.

class HttpServlet(netsvc.HttpServlet,netsvc.Agent):
def __init__(self,session):

netsvc.HttpServlet.__init__(self,session)
netsvc.Agent.__init__(self)

def processRequest(self):
if self.requestMethod() != "GET":

self.sendError(400)
else:

self.sendResponse(200)
self.sendHeader("Content-Type","text/plain")
self.endHeaders()
self.startTimer(self.completeResponse,10,"timeout")

def completeResponse(self,tag):
self.sendContent("Hi there.")
self.endContent()

This is useful where the servlet needs to wait until data needed to formulate a response is available or
where some form of time dependent server push mechanism is being implemented. Note however that
special steps may be required in these situations to cope with a HTTP client prematurely closing the
connection.
97

Servlet Objects
Destruction of Servlets

The destruction of a servlet can come about as a result of two situations. The first situation is where a
servlet handles a requests and generates a response, whether that be successful or otherwise. The sec-
ond situation is where the HTTP client closes the connection before the servlet has sent a complete
response.

The fact that the actions of a servlet may need to be aborted before it has finished complicate the de-
struction of a servlet. This is because any callback which may have been set up will result in a reference
count against the servlet object. The existance of such references will actually prevent the immediate
destruction of the servlet object. If that reference is never deleted, the servlet object may never be de-
stroyed.

All this means that it isn’t sufficient for the servlet framework to delete its own reference to an instance
of a HTTP servlet and expect that it will be destroyed. Instead, it is necessary to introduce a special
member function to the HttpServlet class and require that any derived class extend it as appropri-
ate to cancel any callbacks or otherwise cause external or circular references to the servlet to be delet-
ed.

The name of this member function is "destroyServlet()". The member function will be called
when a HTTP client prematurely closes the connection. So that only one mechanism is employed to
ensure a servlet is destroyed, the member function is also called subsequent to a servlet generating a
complete response.

class HttpServlet(netsvc.HttpServlet,netsvc.Agent):
def __init__(self,session):

netsvc.HttpServlet.__init__(self,session)
netsvc.Agent.__init__(self)

def processRequest(self):
if self.requestMethod() != "GET":

self.sendError(400)
else:

self.sendResponse(200)
self.sendHeader("Content-Type","text/plain")
self.endHeaders()
self.startTimer(self.completeResponse,10,"timeout")

def completeResponse(self,tag):
self.sendContent("Hi there.")
self.endContent()

def destroyServlet(self):
netsvc.HttpServlet.destroyServlet(self)
netsvc.Agent.destroyReferences(self)

The first action of the derived version of the member function "destroyServlet()" should be to
call the base class version of the function in the HttpServlet class. The member function should
then do what is ever necessary to ensure that references to the servlet are deleted. If the servlet had
98

Processing Content
been derived from the Agent class, this would include calling the "destroyReferences()"
member function.

Processing Content

If the function of a HTTP servlet entails that the content associated with a request be processed in some
way, it will be necessary to override the "processContent()" member function. The "process-
Content()" member function will only be called subsequent to "processRequest()" being
called, and only provided that "processRequest()" hadn’t already dealt with the request and sent
a complete response.

As the means to determine how much content to expect is dependent on the specifics of a request, no
attempt is made to first accumulate the content into one block. Instead, the "processContent()"
member function will be called multiple times if appropriate, once for each block of data which is read
in. It is up to the "processContent()" member function to accumulate the data or otherwise proc-
ess it, until it determines that all content has been received.

Typically, how much content is expected will be dictated by the presence of a HTTP content length
header, or by a MIME multipart message boundary string as specificed in a HTTP content type header.
Either way, it is up to the specific implementation of a HTTP servlet to know what to expect and deal
with it appropriately.

class FormServlet(netsvc.HttpServlet):
def processRequest(self):

if self.requestMethod() not in ["GET","POST"]:
self.sendError(501,"Request method type is not supported.")

elif self.requestMethod() == "POST" \
and self.contentLength() < 0:

self.sendError(400,"Content length required for POST.")
elif self.requestMethod() == "GET":

self._environ = {}
self._content = []
self._contentLength = 0
self._headers = self.headers()
self._environ["REQUEST_METHOD"] = self.requestMethod()
self._environ["QUERY_STRING"] = self.queryString()
self._headers["content-type"] = \

"application/x-www-form-urlencoded"
try:

form = cgi.FieldStorage(headers=self._headers, \
environ=self._environ,keep_blank_values=1)

self.processForm(form)
except:

netsvc.logException()
self.shutdown()

elif self.contentLength() == 0:
self.processContent("")
99

Servlet Objects
def processContent(self,content):
self._content.append(content)
self._contentLength = self._contentLength + len(content)
if self._contentLength >= self.contentLength():

self._environ["REQUEST_METHOD"] = self.requestMethod()
self._content = string.join(self._content,"")
self._content = self._content[:self.contentLength()]
fp = StringIO.StringIO(self._content)
try:

form = cgi.FieldStorage(headers=self._headers, \
environ=self._environ,keep_blank_values=1,fp=fp)

self.processForm(form)
except:

netsvc.logException()
self.shutdown()

def processForm(self,form):
self.sendResponse(501)

Member functions which a HTTP servlet may find useful here are "contentLength()" and "con-
tentType()". The "contentLength()" member function returns an integer value correspond-
ing to that defined by the HTTP content length header, or "-1" if no such field was provided. The
"contentType()" member function returns the HTTP content type header. Note that this will in-
clude any supplied parameters so you will need to extract these yourself.

A HTTP servlet may also interrogate arbitrary headers using the member functions "contains-
Header()" and "header()". These respectively indicate if a header exists and return its value. The
name of a header should always be given as a lower case string. All headers may be obtained as a Py-
thon dictionary using "headers()".

If a HTTP servlet encounters an internal error at any time, it may call the "shutdown()" member
function to abort all processing of the request. This will cause the connection to the HTTP client to be
closed immediately, discarding any data which hadn’t yet been sent. The instance of the HTTP servlet
will then subsequently be destroyed.

The Form Servlet

As processing of form data will be a common situation, an implementation of a form servlet is provid-
ed. This is called FormServlet. The implementation of this servlet is similar to the previous exam-
ple except that it does additional processing to translate data from the types used by the
FieldStorage class into standard Python lists and dictionaries. The name of the member function
which you need to override to process the form is "handleRequest()".

class LoginServlet(netsvc.FormServlet):
def handleRequest(self):

if self.containsField("user") and \
self.containsField("password"):

user = self.field("user")
100

Slow HTTP Clients
password = self.field("password")
if self.authenticateUser(user,password):

self.sendResponse(netsvc.REDIRECT_TEMPORARY)
self.sendHeader("Location",self.serverRoot())
self.endHeaders()
self.endContent()

else:
self.sendError(400)

else:
self.sendError(400)

def authenticateUser(self,user,password):
...

The existance of a field can be determined by calling the "containsField()" member function.
The member function "field()" can then be called to retrieve the value for the field. All fields which
have been set can be obtained as a dictionary using the "fields()" member function.

Slow HTTP Clients

The HTTP servlet framework does not use multithreading but is layered on top of an event system.
This fact means that it is not possible for a HTTP servlet to block, as doing so would block the whole
process and stop anything else from running. For this reason, a HTTP servlet does not have direct ac-
cess to the socket connection associated with a HTTP client. Instead, a HTTP servlet in sending data
back to a HTTP client is effectively queueing the data for deliverly.

If the HTTP client is slow in reading data from a socket connection, the server side of the socket con-
nection could effectively block. The underlying framework used to manage a socket connection will
detect this, and will only send data over a socket connection when such a condition would not occur.
A consequence of the queuing mechanism however is that any data will first be added to a queue and
will only be sent after the servlet has returned.

For a small response this would not be a problem, but if the content associated with a response is large,
the size of the process would grow dramatically if all data is queued at once. To avoid this, it is impor-
tant that if sending large responses that they be sent in parts. Further, a HTTP servlet should suspend
sending of further data when the socket connection would block, as this would again only serve to grow
the amount of queued data and thus the size of the process.

To monitor changes in the state of the socket connection, a HTTP servlet should call the member func-
tion "monitorCongestion()", passing a callback function. The callback function supplied will
be called when writing data to a socket connection would effectively block and also subsequently when
the socket has cleared. These changes in state can be used to suspend and subsequently resume sending
of data.

class TestServlet(netsvc.FormServlet):
def __init__(self,session):

netsvc.FormServlet.__init__(self,session)
101

Servlet Objects
self._batch = None
self._total = None
self._count = 0
self._job = netsvc.Job(self.generateContent)

def destroyServlet(self):
FormServlet.destroyServlet(self)
self._job.cancel()
self._job = None

def handleRequest(self):
if not self.containsField("batch") or \

not self.containsField("total"):
self.sendError(400)

else:
try:

self._batch = int(self.field("batch"))
self._total = int(self.field("total"))

except:
self.sendError(400)

else:
self.sendResponse(200)
self.sendHeader("Content-Type","text/plain")
self.endHeaders()
self.monitorCongestion(self.clientCongestion)
self._job.schedule(netsvc.IDLE_JOB)

def generateContent(self):
content = []
for i in range(0,self._batch):

self._count = self._count + 1
content.append(string.zfill(self._count,60))

content.append("")
self.sendContent(string.join(content,"\n"))
self._total = self._total - 1
if self._total <= 0:

self.ignoreCongestion()
self.endContent()

else:
self.flushContent()
self._job.schedule(netsvc.IDLE_JOB)

def clientCongestion(self,status,pending):
if status == netsvc.CONNECTION_CLEARED:

self._job.reset()
self._job.schedule(netsvc.IDLE_JOB)

elif status == netsvc.CONNECTION_BLOCKED:
self._job.cancel()

When a HTTP servlet no longer wishes to monitor the status of the socket connection the member func-
tion "ignoreCongestion()" can be called. Although not absolutely necessary, it is good practice
to always call this just prior to calling the member function "endContent()" to close off the re-
sponse.
102

Slow HTTP Clients
Note that the Python wrapper around the C++ implementation of the HTTP servlet class performs buff-
ering of content and will only pass content onto the C++ implementation when a set amount has been
exceeded or the end of content has been indicated. If you suspend sending of further data, so that a
HTTP client will see content produced so far, you may wish to flush out any buffered data by calling
the "flushContent()" member function.
103

Servlet Objects
104

Servlet Plugins
When using a file server object with the HTTP servlet framework, it is possible to associate a special
purpose handler or plugin with requests against files with a particular extension. When a request is
made against such a file, the plugin is used as an intermediary for the creation of a servlet to handle
that request. The plugin can return a servlet which was loaded into the application at startup, or might
also load the servlet from the file or otherwise generate a servlet on the fly.

This feature means that the functionality of an application can to a degree be extended but without the
need to have such functionality hardwired into the application itself. The functionality of an applica-
tion might even be extended or reduced at run time by the simple act of adding or removing files from
the file system. This eliminates the need to restart an application everytime a change is required.

Python Plugin

To support implementations of HTTP servlets being contained within files residing in the file system,
as opposed to being hardwired into the application itself, the PythonPlugin class is provided. This
gives greater flexibility as it would not be necessary to restart the application to add in new function-
ality. The plugin can also detect when a servlet file has been modified and automatically reload it as
necessary.

So that the Python import mechanism can find these files, they should be given a ".py" extension.
This mapping is however not built in and it is necessary to register the extension as being associated
with the particular plugin in question.

filesrvr = netsvc.FileServer(os.getcwd())
filesrvr.plugin(".py",netsvc.PythonPlugin())
105

Servlet Plugins
The effect of this registration will be that whenever a file with extension ".py" is requested by a HTTP
client, the plugin object will be executed as a callable object, with the HTTP session object and the
name of the file being passed as arguments. In this case, the PythonPlugin object will import the
file as if it is a Python module, obtain from it a reference to the HTTP servlet and then create an in-
stance of the HTTP servlet to service the request.

The main difference when writing a servlet to be contained in a file and loaded in this way, as opposed
to one which is hardwired into the actual application, is that it is necessary to provide a hook for cre-
ating an instance of the servlet. This is done by providing a definition within the file of the symbol
"__servlet__".

import netsvc

class HttpServlet(netsvc.HttpServlet):
def processRequest(self):

if self.requestMethod() != "GET":
self.sendError(400)

else:
self.sendResponse(200)
self.sendHeader("Content-Type","text/plain")
self.endHeaders()
self.sendContent("Hi there.")
self.endContent()

__servlet__ = HttpServlet

In the simplest case, the symbol "__servlet__" can be defined to be a reference to the actual servlet
type. The PythonPlugin object will execute "__servlet__" with the expectation it is a callable
object, supplying it with a single argument of the HTTP session object. In the above case this will im-
mediately result in an instance of the servlet being created.

An alternative might be that "__servlet__" be defined as a function. This would allow one of a
number of servlets to be chosen based on specific criteria, such as the time of day or whether the serv-
ice is operational.

def __servlet__():
return HttpServlet

If a servlet requires additional arguments to be supplied along with the HTTP session object, a proxy
object could instead be defined which transparently supplies the additional arguments. For example, a
servlet designed to facilitate directory browsing might be supplied the name of the directory in which
the servlet file resided, with the servlet generating a directory listing of files contained in the directory.

class ServletProxy:
def __call__(self,session):

directory = os.path.dirname(__file__)
return BrowseServlet(session,directory)
106

Module Caching
__servlet__ = ServletProxy()

Note that an instance of the servlet is created for each request. That is, unlike other similar systems
available for Python, an instance of a servlet object is not cached and reused. If you need to maintain
state between requests, such information should be factored out into a distinct service agent object.

Module Caching

In the case of the PythonPlugin object, when the file containing the actual servlet is read in, it is
compiled into Python byte code and cached. This means that a subsequent request against that servlet
will use the cached byte code and will not reread and recompile the file. So that is isn’t necessary to
stop and start the application if the file is changed, upon each subsequent request a check is made to
see if the file has since been modified. If the file has been modified, it will be reread and recompiled
ensuring that changes made to the file are visible.

Note that this mechanism will only detect if the actual servlet file has been modified. If that servlet file
imports other modules using the Python "import" command and it is those other modules which have
been changed, the cached servlet will still be used. This is acceptable where the other modules contain
core program logic on which other parts of the application are dependent, but not in the case where the
separate module contains a servlet base class defining the structure of a web page and it is the structure
of the web page which you wish to change.

To cater for this situation, a special mechanism is provided for importing of modules which define
servlet base classes or functionality related to the presentation of a web page. When this mechanism is
used, that the servlet file is dependent on the module is recorded and a servlet file will be reread and
recompiled, as will the module it depends on, when only the module had changed.

import os
import netsvc

cache = netsvc.ModuleCache()
directory = os.path.dirname(__file__)
_template = cache.importModule("_template",directory)

class HttpServlet(_template.PageServlet):
def writeContent(self):

self.writeln("Hi there.")

__servlet__ = HttpServlet

This means that the structure of a page can be defined in a common place, with each servlet file only
defining the content specific to that page. The module caching mechanism should however only be
used for this purpose. It is also recommended that for a particular module file, you not mix this mech-
anism and the standard Python import system, but use this system exclusively.
107

Servlet Plugins
Note that a module imported in this way can use the same mechanism to import further modules with
the dependence on those additional modules also being considered when the initial file is requested.
Be aware however, that if files are located on a different machine to that which the application is run-
ning on and the clocks are not sychronised properly, updates may not always be detected correctly.

Writing a Plugin

A plugin can be any callable object, so long as it accepts as arguments when called, a HTTP session
object and the name of a file which is the target of the request. The plugin may therefore be a type, a
function, or an object which overrides the "__call__" method. Which approach is used will depend
on whether state needs to be preserved between invocations of the plugin. If no state needs to be pre-
served, a simple function may be the most approrpiate.

def factory(session,file):
return netsvc.FileServlet(session,file)

filesrvr.plugin(".txt",factory)

If a HTTP servlet when being constructed takes the same arguments as those passed to the plugin, ie.,
the HTTP session object and the name of a file, the servlet itself might instead be registered as the
plugin.

filesrvr.plugin(".txt",netsvc.FileServlet)

Where state needs to be preserved, registration of an actual object instance which can hold the state,
may be a better approach.

class Plugin:
def __call__(self,session,file):

return netsvc.FileServlet(session,file)

filesrvr.plugin(".txt",Plugin())

Plugin Aliasing

When a plugin is registered, the filename extension specified must appear in the URL used by the
HTTP client when accessing that resource. This has the perhaps unwanted effect of exposing details
about how the web pages are implemented. This may limit to what extent you can easily change the
implementation later on, but may also give a malicious user ideas about how they may remotely break
into your system.

For these reasons, although a servlet file might be required to use the extension ".py", if that servlet
file always produces HTML, it may be preferable that that resource always be accessed by using a
".html" extension. An ability to do this can also be useful in the case where a resource is initially
stored as a static file with a ".html" extension, but is later changed to be dynamically generated using
108

Plugin Aliasing
a servlet. In this later case, the name of the resource can remain the same, and no references to the re-
source need to be changed.

To facilitate use of an alias, an optional argument can be supplied to the "plugin()" member func-
tion defining the alternate extension the resource should be identified with. If you wanted all servlet
files accessible using a particular instance of a file server object to be accessed using a ".html" ex-
tension instead of the ".py" extension, the string ".html" would be supplied as the optional third
argument to the "plugin()" member function.

filesrvr.plugin(".py",netsvc.PythonPlugin(),".html")
filesrvr.hide(".py")

Note that if the "hide()" member function isn’t also called with the ".py" extension, the servlet file
would still be accessible with a ".html" extension, but a request against the ".py" extension would
yield the actual Python source code. This would not be an issue if the plugin had at the same time also
been registered for ".py" files, but without the alias.

If the ".py" file is hidden, if the servlet file was called "login.py", it would be accessable as
"login.html", but an attempt to use "login.py" would result in a HTTP error response indicat-
ing that the file could not be found. If the ".py" file isn’t hidden, but the plugin is registered twice,
once without an alias and once with the alias ".html", both "login.py" and "login.html"
would work.

If the servlet files are providing the roles of CGI scripts, it may be desirable for the files to use no ex-
tension at all. That is, the file should be accessed as "login" instead of "login.py". If this is the
case, rather than ".html", an empty string can be provided.

filesrvr.plugin(".py",netsvc.PythonPlugin(),"")

Be aware that the optional argument to "plugin()" defining the alias is actually treated as a filename
suffix and not strictly as an extension. What this means is that that argument need not start with ".",
but can be any arbitrary string in which the name of a resource ends. This means it is actually possible
to synthesis new resources as long as they derive from an actual file.

One use of this is a plugin which returns a servlet which generates a thumbnail version of an image.
For example, if an image file was originally called "holiday.gif", a request against "holiday-
thumbnail.gif" could me made to generate a thumbnail image on the fly.

def factory(session,file):
return ThumbnailServlet(session,file)

filesrvr.plugin(".gif",factory,"-thumbnail.gif")
109

Servlet Plugins
110

Remote Access
The service agent and message exchange framework operate based on the concept of processes which
are a part of a distributed application being permanently connected together. This model works fine on
corporate networks, but is not always practical when run across the Internet. One drawback of this ap-
proach is that it is often necessary to open up special ports on a corporate firewall to permit access.

For many instances where communication across the Internet is required, a connected model of oper-
ation isn’t actually required. Instead, many types of operations can be carried out using a request/reply
model whereby a connection is only maintained for the lifetime of the request. This is precisely the
type of mechanism which is used by HTTP.

Because of the wide acceptance for HTTP a number of remote procedure call protocols have been de-
veloped which operate within the bounds of a HTTP request. The most well known of these are XML-
RPC and SOAP. Unfortunately, both of these protocols are actually lacking in certain respects and
have not been found to be a totally satisfactory medium.

In place of these protocols, an alternative RPC over HTTP protocol is provided called NET-RPC. At
present, the only client available is implemented using Python. If you are writing a closed system this
shouldn’t present a problem. In those cases where public access may be required, gateways for XML-
RPC and SOAP are still available, but using them will place a limitation on the type of data which you
can pass around.

Note that whichever RPC over HTTP protocol you do decide to use, the code for your services is the
same. In fact, your application may include gateways for all three protocols and a user can use which-
ever type of client they find easiest. In this respect, it doesn’t matter too much which protocol wins out.
111

Remote Access
Even if a new protocol comes along, it is a relatively simple matter to incorporate yet another gateway,
again without you having to make modifications to the core of your system.

The RPC Gateway

The gateway which accepts an RPC request is actually an instance of a HTTP server object. The gate-
way will accept a request and based on the URL determine which service the request applies to. The
request will then be translated into a call over the service agent framework, with the corresponding re-
sult being packaged up and returned to the remote client.

Because the service agent framework can operate in a distributed manner using the message exchange
framework, the service which a request applies to need not even be in the same process as the RPC
gateway. So that a remote client can’t access any arbitrary service however, a mechanism is provided
to limit which services are actually visible. The mechanisms for client and user authorisation imple-
mented by the HTTP servlet framework can also be used to block access as appropriate.

For the NET-RPC protocol, the RPC gateway is implemented by the RpcGateway class. When cre-
ated, the gateway needs to be supplied the name of a service group. Only those services which are a
member of that service group will be accessible through that particular instance of the RPC gateway.
Having created an instance of the RPC gateway, it needs to be mapped into the URL namespace of a
HTTP daemon object.

import netsvc
import signal

class Validator(netsvc.Service):
def __init__(self,name="validator"):

netsvc.Service.__init__(self,name)
self.joinGroup("web-services")
self.exportMethod(self.echo)

def echo(self,*args)
return args

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)

validator = Validator()

port = 8000
group = "web-services"
httpd = netsvc.HttpDaemon(port)
rpcgw = netsvc.RpcGateway(group)
httpd.attach("/service",rpcgw)
httpd.start()

dispatcher.run()
112

The Client Application
In this example, any HTTP request made using a URL whose path falls under the base URL of "ht-
tp://localhost:8000/service/", will be regarded as being a NET-RPC request. The name
of the service which a request applies to is determined by removing the base URL component from the
full URL. The full URL used to access the service in this example would therefore be "http://lo-
calhost:8000/service/validator". Note that the service is only visible however, because
it had added itself to the group "web-services", the same group as the RPC gateway had been initialised
with.

The methods of the service which are available are the same as those which would be accessible over
the service agent framework internal to your application. That is, a service must export a method for it
to be accessible. The only such method available in this example would be "echo()".

The Client Application

Client side access to the NET-RPC protocol is available through the Python "netrpc" module. This
module is not dependent on the "netsvc" module and is pure Python. The name of the class used to
make a request to a remote service is RemoteService. This class behaves in a similar fashion to the
LocalService class from the "netsvc" module except that the service name is replaced with the
URL identifying the remote service.

import netrpc

url = "http://localhost:8000/service/validator"
service = netrpc.RemoteService(url)
print service.echo(1,1L,1.1,"1")

Only the "http" protocol is supported. If the URL specifies an unsupported protocol, the exception Ad-
dressInvalid will be raised. If the URL didn’t identify a valid service on the remote host, a
ServiceUnavailable exception is raised. Other possible exceptions which may be raised are
AuthenticationFailure andTransportFailure. All the more specific exceptions actually
derive from ServiceFailure and the ServiceFailure exception is also used for errors gen-
erated by the service itself, so it is often sufficient to watch out for just that type of exception.

Restricting Client Access

In addition to being able to dictate precisely which services are visible, it is also possible to restrict
access to specific clients. This can be done by allowing only certain hosts access, or by limiting access
to specific individuals by using user authentication. Both schemes rely on features within the existing
HTTP servlet framework.

class HttpDaemon(netsvc.HttpDaemon):
def __init__(self,port,hosts=["127.0.0.1"]):

netsvc.HttpDaemon.__init__(self,port)
self._allow = hosts

def authorise(self,host):
113

Remote Access
return host in self._allow:

class RpcGateway(netsvc.RpcGateway):
def __init__(self,group,users=None):

netsvc.RpcGateway.__init__(self,group):
self._allow = users

def authorise(self,login,password):
return self._allow == None or \

(self._allow.has_key(login) and \
self._allow[login] == password)

users = { "admin": "secret" }

port = 8000
group = "web-services"
httpd = HttpDaemon(port)
rpcgw = RpcGateway(group,users)
httpd.attach("/service",rpcgw)
httpd.start()

When user authentication is being used, the login and password of the user can be supplied as addi-
tional arguments to the RemoteService class when it is created.

url = "http://localhost:8000/service/validator"
service = netrpc.RemoteService(url,"admin","secret")
print service.echo(1,1L,1.1,"1")

If a login and password aren’t supplied when required, or the details are wrong, the Authentica-
tionFailure exception will be raised.

Duplicate Services

Because a URL identifies a unique resource, a conflict arises due to the fact that within the service
agent framework it is possible to create multiple services with the same name. What happens in this
circumstance is that the RPC gateway will remember which service agent was the first it saw in the
required service group, having a particular service name. While that particular service agent exists, it
will always use that service agent as the target of requests.

When there are multiple service agents with the same service name and the first one seen by the RPC
gateway is destroyed, the RPC gateway will then fall back to using the second one it saw. That is, the
RPC gateway will always use the service agent which it has known about the longest. In general, if you
intend to make services accessible using the RPC gateway, it is recommended that you always use
unique service names within the service group dictating which services are actually visible.
114

User Defined Types
User Defined Types

The NET-RPC protocol supports all the types supported by the service agent framework, as well as the
concept of user defined scalar types. That is, if a service responds with data incorporating additional
scalar types, they will by default be passed back as instances of the Opaque type, where the "type"
attribute gives the name of the type and the "data" attribute the encoded value. Similarly, new types
may be sent by initialising an instance of the Opaque type with the name of the type and the value in
its encoded form.

url = "http://localhost:8000/service/validator"
service = netrpc.RemoteService(url,"admin","secret")

following are equivalent
value = complex(1,1)
print service.echo(value)
print service.echo(netrpc.Opaque("python:complex",repr(value)))

Encoders and decoders for additional user defined scalar types can be provided by registering the ap-
propriate functions using the "encoder()" and "decoder()" functions available in the "netrpc"
module. The functions for registering the encoder and decoder functions are used in exactly the same
was as those in the "netsvc" module. In fact, they are the same functions as the "netsvc" module
imports them from the "netrpc" module, as it does for the implementations of all of the extended
types.

As is the case in the service agent framework, you need to be mindful about the effect of registering
arbitrary encoders and decoders at global scope, especially if your client application makes calls
against different services implementing their own scalar types. This becomes even more of an issue if
the "netrpc" module is used to make client side calls from inside a server side application using the
"netsvc" module. This is because they will share the same global encoders and decoders.

If you need to support types which are specific to a service being called, rather than registering the en-
coder and decoder function at global scope, the safer way is to supply your own functions just for that
service. This is done by supplying the function using a keyword argument when initialising the in-
stance of the RemoteService class. The keyword argument for the encoder function is "encode"
and that for the decoder function is "decode". The functions you supply should call the corresponding
global function if it doesn’t know what to do with a specific type.

def encodeObject(object):
if type(object) == MySQLdb.DateTimeType:

return ("xsd:string",object.strftime())
elif type(object) == MySQLdb.DateTimeDeltaType:

return ("xsd:string",str(object))
return netsvc.encodeObject(object)

url = "http://localhost:8000/service/validator"
service = netrpc.RemoteService(url,encode=encodeObject)
115

Remote Access
Managing User Sessions

A common practice with web based services is to have a request initiate a unique session for a user.
Having opened the session, any requests will then be identified with that session, with information re-
garding the session potentially being cached on the server side until the session is closed. Such a ses-
sion might also be used as a way of allocating a server side resource to that user, or creating a database
cursor dedicated to a particular user so more complex queries can be made.

A scheme suitable for use over the service agent framework was previously described, however that
implementation was based on the ability to subscribe to the existence of the owner of the session, with
the session being automatically closed when the owner was destroyed. When the RPC gateway is used,
this approach can’t be used, as the sender of the request will be a transient service created by the RPC
gateway to service just that request. An alternative when the RPC gateway is being used is to automat-
ically close the session after a set period of inactivity.

class Database(netsvc.Service):
def __init__(self,name="database",**kw):

netsvc.Service.__init__(self,name)
self._name = name
self.joinGroup("database-services")
self._database = MySQLdb.connect(**kw)
self._cursors = 0
self.exportMethod(self.cursor)

def executeMethod(self,name,method,params):
try:

return netsvc.Service.executeMethod(self,name,method,params)
except MySQLdb.ProgrammingError,exception:

self.abortResponse(1,"Programming Error","db",str(exception))
except MySQLdb.Error,(error,description):

self.abortResponse(error,description,"mysql")
def cursor(self,timeout=60):

self._cursors = self._cursors + 1
name = "%s/%d" % (self._name,self._cursors)
cursor = self._database.cursor()
Cursor(name,cursor,timeout)
child = "%d" % self._cursors
return child

The idea is that when a request is made, a unique instance of a service is created specific to the session,
with a name which is then passed back to the remote client. In the example shown, if the service was
originally accessible using the URL "http://localhost/database", the instance of a service
created for that specific session would be the same URL but with the session id appended, separated
by "/". Eg., "http://localhost/database/1". Obviously, a session id which could not be
easily guessed should however be used.

The client would now direct all future requests to the new URL. When the client has finished with the
service it would call the "close()" method on the service. If for some reason the client did not ex-
116

Managing User Sessions
plicitly close off the session, it would be automatically closed after a period of 60 seconds of inactivity,
or whatever period was defined when the session was initiated. An implementation of the database cur-
sor service for this example might be as follows.

class Cursor(netsvc.Service):
def __init__(self,name,cursor,timeout):

netsvc.Service.__init__(self,name)
self.joinGroup("database-services")
self._cursor = cursor
self._timeout = timeout
self._restart()
self.exportMethod(self.execute)
self.exportMethod(self.executemany)
self.exportMethod(self.description)
self.exportMethod(self.rowcount)
self.exportMethod(self.fetchone)
self.exportMethod(self.fetchmany)
self.exportMethod(self.fetchall)
self.exportMethod(self.arraysize)
self.exportMethod(self.close)

def encodeObject(self,object):
if hasattr(MySQLdb,"DateTime"):

if type(object) == MySQLdb.DateTimeType:
return ("xsd:string",object.strftime())

elif type(object) == MySQLdb.DateTimeDeltaType:
return ("xsd:string",str(object))

return netsvc.Service.encodeObject(self,object)
def executeMethod(self,name,method,params):

try:
return netsvc.Service.executeMethod(self,name,method,params)

except MySQLdb.ProgrammingError,exception:
self.abortResponse(1,"Programming Error","db",str(exception))

except MySQLdb.Error,(error,description):
self.abortResponse(error,description,"mysql")

def _restart(self):
self.cancelTimer("idle")
self.startTimer(self._expire,self._timeout,"idle")

def _expire(self,name):
if name == "idle":

self.close()
def execute(self,query,args=None):

result = self._cursor.execute(query,args)
self._restart()
return result

additional methods

def close(self):
self._cursor.close()
117

Remote Access
self.cancelTimer("idle")
self.destroyReferences()
return 0

Using the "netrpc" module to access the service, a client might be coded as follows. In this case a
separate cursor is created in relation to the queries made about each table in the database.

import netrpc

url = "http://localhost:8000/database"
service = netrpc.RemoteService(url)

tables = service.execute("show tables")

timout = 30
for entry in tables:

table = entry[0]
print "table: " + table
name = service.cursor(30)
print "cursor: " + url + "/" + name
cursor = netrpc.RemoteService(url+"/"+name)
cursor.execute("select * from "+table)
desc = cursor.description()
print "desc: " + str(desc)
data = cursor.fetchall()
print "data: " + str(data)
cursor.close()

In general, giving open access to a database in this way may not be advisable, especially over the In-
ternet. Such a mechanism might be restricted to a corporate intranet. Alternatively, custom interfaces
should be layered on top of the database providing interfaces based on functional requirements.

The XML-RPC Gateway

If the Python NET-RPC client implementation can’t be used because of the need to use a different lan-
guage for the client, you might instead consider using the XML-RPC protocol. Clients for the XML-
RPC protocol are available in many different languages, many of which are listed at "http://www.xm-
lrpc.com". The only change to your server application will be to instantiate an instance of the XML-
RPC gateway instead of the NET-RPC gateway.

import netsvc
import netsvc.xmlrpc

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)

validator = Validator()
118

http://www.xmlrpc.com
http://www.xmlrpc.com

The XML-RPC Gateway
port = 8000
group = "web-services"
httpd = netsvc.HttpDaemon(port)
rpcgw = netsvc.xmlrpc.RpcGateway(group)
httpd.attach("/service",rpcgw)
httpd.start()

dispatcher.run()

If you do decide to rely upon the XML-RPC protocol instead of the NET-RPC protocol, you will be
constrained as to what types you can use. This is because the XML-RPC protocol has a more limited
set of core types and is not type extendable as is the NET-RPC protocol. One major deficiency of the
XML-RPC protocol, is that it has no way of passing a null value, such as that implemented by the Py-
thon None type. Some XML-RPC clients have been extended to support a null value, but this gateway
does not implement such an extension.

A further complication which can arise in using XML-RPC is that the specification isn’t precise in cer-
tain areas. Although an XML-RPC message is notionally XML, the specification indicates use of AS-
CII values in strings only. This is in conflict with XML which requires at least UTF-8. Another issue
is that the XML-RPC specification mentions nothing about needing to support XML comments, CDA-
TA or various other XML constructs. This has lead to some implementations of the protocol not sup-
porting such features of XML and others relying on them.

Because of the inter operability issues which may arise due to the differences between different XML-
RPC clients, a number of different XML-RPC protocol implementations are actually supported by the
XML-RPC gateway. By default a pure Python implementation of routines for decoding and encoding
XML-RPC messages is used. This implementation uses a full XML parser and should be able to handle
anything XML dictates.

In general, when only small amounts of data is being passed back and forth, most of the cost of a remote
procedure call is actually consumed in the costs of starting up and ripping down the TCP/IP connection
by the client and of the server responding to the connection request. That the XML-RPC encoding and
decoding routines are implemented in Python may not therefore have any significant impact. However,
when large amounts of data are being passed around, this may not be the case.

An alternative to the Python implementation is one implemented in C++. This implementation will be
quicker at decoding XML-RPC messages, but does not use a full XML parser and thus will not work
if XML constructs such as comments and CDATA are used. The implementation also may not always
handle out of order elements in the method call and struct elements. The C++ implementation if desired
can be selected by supplying a keyword argument when initialising the XML-RPC gateway.

Default uses Python implementation.
rpcgw1 = netsvc.xmlrpc.RpcGateway(group)

Use C++ implementation instead.
rpcgw2 = netsvc.xmlrpc.RpcGateway(group,variant="c++")
119

Remote Access
Explicitly specify use of Python implementation.
rpcgw3 = netsvc.xmlrpc.RpcGateway(group,variant="python")

Both these Python and C++ implementations of the routines for handling the XML-RPC protocol are
supplied with OSE. Because of the limitations of the XML-RPC protocol in respect of passing a more
diverse set of types, when these implementations are used, types which don’t have a direct equivalent
in XML-RPC will have their encoded value passed as a string, with a subsequent loss of type informa-
tion.

For example, the Python None type will be sent as an empty string. Note this only applies to the result
of a request when it is being returned via an XML-RPC request. Since XML-RPC doesn’t support the
extra types, a client strictly conforming to the XML-RPC protocol would not have been able to gener-
ate them in the first place.

Although there are numerous third party XML-RPC clients available, including a number for Python,
an XML-RPC client is also provided with OSE. This client is interface compatible with that provided
by the "netrpc" module and is available in the "netrpc.xmlrpc" module. This provides exactly
the same interface as the "netrpc" module, even to the extent of being able to reconstruct the more
informative failure responses provided by the service agent framework.

import netrpc.xmlrpc

url = "http://localhost:8000/service/validator"
service = netrpc.xmlrpc.RemoteService(url)
print service.echo(1,1L,1.1,"1")

What happens when a failure occurs is that the additional information provided by the service agent
framework is encoded into the description field of an XML-RPC fault. When this is received by the
"xmlrpc" module it extracts out the information into separate fields once more. If you are using a
third party XML-RPC client this will not occur. What you will find instead is that the fault code will
equate to the error code of a failure, with the description included with the fault looking something like
the following.

origin -- the description

additional fault details

That is, the description is prefixed by the origin of the failure, separated by "--". The additional details
of the failure will then appear separated from the description by a blank line. You could either use this
as is, or separate out the information yourself.

Note that when using the "xmlrpc" module the encoders and decoders become largely irrelevant giv-
en that the XML-RPC protocol is not type extendable. Although the "xmlrpc" module provides an
interface compatible with the "netrpc" module, it still may be used to make requests against third
party XML-RPC servers.
120

The SOAP Gateway
The SOAP Gateway

Yet another alternative to XML-RPC is the SOAP protocol. A starting point for SOAP is the site "http:/
/www.develop.com/soap". Although SOAP is newer than XML-RPC and is notionally type extenda-
ble, it actually has some more significant limitations than XML-RPC. As with XML-RPC, it is only
recommended that you use this protocol in preference to the NET-RPC protocol if you really have to.
In doing so you will need to write your code keeping in mind these limitations.

The biggest limitation of the SOAP protocol at present is that the specification uses XML element
names to describe the member keys in structures. At present, using the default SOAP encoding such
structures are the only way of representing a Python dictionary. The service agent framework already
restricts keys in dictionaries to strings, but the SOAP protocol limits what values those keys can have
because of the XML naming rules.

More specifically, XML says that an element name, and thus a key in a Python dictionary, cannot start
with a number. Further to this, a key would not be able to contain white space, a whole host of punc-
tuation characters, nor would a key be able to start with the string "xml" in any mix of upper or lower
case. It is also not possible to represent an empty dictionary in SOAP. These amount to being quite a
severe restriction and effectively means that dictionaries need to be converted into a list of key/value
tuples in order to be sent correctly.

The Apache SOAP toolkit has defined an alternative compound type which would be suitable for rep-
resenting a dictionary, but only a few SOAP toolkits actually support it. It is also questionable as to
whether a SOAP client would interchangeable accept this new type in any place where a structure may
appear. Inevitably, Microsoft and IBM will come up with yet another scheme for doing the same thing,
so any consensus is likely to be long in coming.

At present the default SOAP gateway relies on a third party "ZSI" module from the "pywebsvcs"
toolkit. To use the SOAP gateway, you will need to have separately obtained this third party module
from "http://sourceforge.net/projects/pywebsvcs" and installed it. You must have version 1.2 RC2 or
later of this package. It is not possible to use version 1.1 or earlier of this package because of bugs in
the package.

If you still wish to use the SOAP gateway, the only real change you would need to make to your code
would be to instantiate an instance of the SOAP gateway in place of the NET-RPC gateway. Obviously
though, if your service produces data which doesn’t fit within the limitations of the SOAP protocol the
gateway will generate XML which a client will not be able to parse.

import netsvc
import netsvc.soap

dispatcher = netsvc.Dispatcher()
dispatcher.monitor(signal.SIGINT)

validator = Validator()
121

http://www.develop.com/soap
http://www.develop.com/soap
http://sourceforge.net/projects/pywebsvcs

Remote Access
port = 8000
group = "web-services"
httpd = netsvc.HttpDaemon(port)
rpcgw = netsvc.soap.RpcGateway(group)
httpd.attach("/service",rpcgw)
httpd.start()

dispatcher.run()

To complement the SOAP gateway, a SOAP client is provided in the "netrpc.soap" module. This
client is only suitable for use against SOAP based web services which rely on positional arguments.
Most web services use WSDL and therefore require named parameters, making the client unsuitable
in those cases.

import netrpc.soap

url = "http://localhost:8000/service/validator"
service = netrpc.soap.RemoteService(url)
print service.echo(1,1L,1.1,"1")

If using this client against a SOAP server written using a different system, it may be necessary to bind
the method call to a specific namespace and/or provide a specific value for the "SOAPAction" header
of the SOAP request. If this is the case, a method namespace can be supplied using the "ns" keyword
argument when creating the instance of the RemoteService class. Similarly, a value for the "SOA-
PAction" header can be supplied using the "soapaction" keyword argument. If no "soapac-
tion" argument is supplied, the value of the "SOAPAction" header will be a pair of double quotes.

url = "http://services.soaplite.com/hibye.cgi"
uri = "http://www.soaplite.com/Demo"
service = netrpc.soap.RemoteService(url,ns=uri)
print service.hi()

If a particular SOAP server requires a different method namespace or "SOAPAction" header for each
method called, the "ns" and "soapaction" keyword arguments can instead be supplied at the point
the call is made, rather than when the RemoteService object is created.

Note that although SOAP is type extendable, because the namespace associated with a new type name
must be bound to a URI, the lesser described type information used by the service agent framework
can’t be transparently translated into valid XML as per the SOAP encoding rules. You are therefore
limited to types described by the XML Schema Datatypes specification, although at present not all
such types may be translated by the SOAP gateway. In the future as experience and demand dictates,
the gateway will be amended however to ensure that any types from the XML Schema Datatypes are
passed through appropriately.

In respect of a failure response generated by the service agent framework, the four fields will be en-
coded as separate fields within the SOAP fault structure detail element enclosed with an XML element
122

Using Multiple Gateways
called "ServiceFailure". All elements will be qualified in the OSE namespace. Inadequate prior
art has been found as to the most appropriate way to make use of the detail element, so it may be nec-
essary to change this in the future if necessary.

Using Multiple Gateways

Because it is possible to attach multiple HTTP server objects to a particular instance of a HTTP dae-
mon object, you aren’t restricted to having only one instance of an RPC gateway. The first conse-
quence of this fact is that for which ever protocol you intend to use, multiple RPC gateways can be
created which map to distinct parts of the URL namespace.

Such RPC gateways can and would generally be associated with different groups of services. It is pos-
sible that some of the RPC gateways might be protected using user authentication. At the same time,
a HTTP file server object or custom HTTP server object might also be attached to the same HTTP dae-
mon.

files = netsvc.FileServer(os.getcwd())
httpd.attach("/download",files)

user = netsvc.RpcGateway("web-services")
httpd.attach("/service",user)

admin = netsvc.RpcGateway("admin-services")
httpd.attach("/admin",admin)

When creating RPC gateways, you also aren’t restricted to them all being for the same protocol. As
long as they are hosted under different parts of the URL namespace, gateways for all three of the RPC
over HTTP protocols currently supported could be provided against the same set of services. In doing
this, as long as your service fits within the lowest common denominator with respect to the limitations
of the XML-RPC and SOAP protocols, you could leave it up to the user as to which protocol they want
to use.

netrpcgw = netsvc.RpcGateway("web-services")
httpd.attach("/netrpc",netrpcgw)

xmlrpcgw = netsvc.xmlrpc.RpcGateway("web-services")
httpd.attach("/xmlrpc",xmlrpcgw)

soapgw = netsvc.soap.RpcGateway("web-services")
httpd.attach("/soap",soapgw)

Using the various features of the HTTP servlet framework, a diverse set of interfaces could be present-
ed through the same HTTP daemon. In general though, it is recommended that a full blown HTTP serv-
er such as Apache still be used for performing as much of the web serving capabilities as possible.

A suitable model may be to use PHP or PSP on your main web server and have it make requests into
the back end application using one of the RPC over HTTP protocols as necessary. This has the benefit
123

Remote Access
of also pushing a lot of the security issues onto the main web server where they are more often than
not easier to manage and deal with. If it was necessary to expose some part of the application direct to
outside users, one approach might be to make use of the Apache "mod_proxy" module rather than
directly exposing the application.
124

	Table of Contents
	Manual Overview
	Python Modules
	Module Descriptions
	Installation and Setup
	Additional Information

	Logging Facility
	Logging a Message
	Specifying a Log File
	Specifying a Log Channel
	Logging Python Exceptions
	Exceptions in a Callback

	Program Setup
	Configuration Database
	Configuration File
	Naming Hierarchies
	Environment Variables
	Unique Identifiers
	Process Identity

	Event Framework
	Scheduling a Job
	Real Time Events
	Destroying Agents
	Alarms and Timers
	Recurring Actions
	Socket Events
	Program Signals
	Program Shutdown

	Service Agents
	Service Naming
	Service Audience
	Anonymous Service
	Service Groups
	Service Registry
	Service Announcements
	Group Announcements
	Service Lookup

	Service Reports
	Publishing Reports
	Monitoring Reports
	Lifetime of Reports
	Identity of Subscribers
	Existence of Publishers

	Service Requests
	Sending a Request
	Handling a Response
	Identifying a Response
	Detecting a Failure
	Lack of Response
	Servicing a Request
	Generating a Failure
	Delaying a Response
	Identity of the Sender
	Invalid Request Method
	Local Service Requests

	Message Exchange
	Exchange Initialisation
	Service Availability
	Connection Announcements
	Authorisation of Clients
	Distributed Exchange Server
	Multiple Exchange Groups
	Scalability of the Framework

	Message Encoding
	Supported Data Types
	Mapping of Scalar Types
	User Defined Types
	Adding New Mappings
	Handling Structured Types

	Servlet Framework
	Framework Overview
	The HTTP Daemon
	The File Server
	Client Authorisation
	User Authorisation
	HTTP Server Objects
	The Error Servlet
	The Redirect Servlet
	The Echo Servlet
	The File Servlet
	Logging of Requests

	Servlet Objects
	Processing a Request
	Persistent Connections
	Delaying a Response
	Destruction of Servlets
	Processing Content
	The Form Servlet
	Slow HTTP Clients

	Servlet Plugins
	Python Plugin
	Module Caching
	Writing a Plugin
	Plugin Aliasing

	Remote Access
	The RPC Gateway
	The Client Application
	Restricting Client Access
	Duplicate Services
	User Defined Types
	Managing User Sessions
	The XML-RPC Gateway
	The SOAP Gateway
	Using Multiple Gateways

